Weierstrass points on a tropical curve

Harry Richman

University of Michigan

hrichman@umich.edu

University of Kentucky Algebra Seminar November 20, 2019

Harry Richman (U. Michigan)

Definition: X a smooth algebraic curve, D_N a divisor of degree N \rightsquigarrow projective embedding $\phi : X \to \mathbb{P}^r$.

Definition: X a smooth algebraic curve, D_N a divisor of degree N \rightsquigarrow projective embedding $\phi : X \to \mathbb{P}^r$.

$$W(D_N) = \{x \in X : \exists H \subset \mathbb{P}^r \text{ s.t. } m_x(H \cap X) \ge r+1\}$$
$$= \begin{cases} x \in X : & \text{``higher-than-expected'' tangency with} \\ & \text{some hyperplane } H \text{ at } x \end{cases}$$

Definition:

$$W(D_N) = \begin{cases} x \in X : & \text{``higher-than-expected'' tangency with} \\ & \text{some hyperplane } H \text{ at } x \end{cases}$$

Example: $X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$

Definition:

$$W(D_N) = \begin{cases} x \in X : & \text{``higher-than-expected'' tangency with} \\ & \text{some hyperplane } H \text{ at } x \end{cases}$$

Example: $X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$

$$N = 3$$

Harry Richman (U. Michigan)

Definition:

$$W(D_N) = \begin{cases} x \in X : & \text{``higher-than-expected'' tangency with} \\ & \text{some hyperplane } H \text{ at } x \end{cases}$$

Example: $X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$

Definition:

$$W(D_N) = \begin{cases} x \in X : & \text{``higher-than-expected'' tangency with} \\ & \text{some hyperplane } H \text{ at } x \end{cases}$$

Example: $X = \{xyz + x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$

Intution (Mumford):

N-torsion points \leftrightarrow Weierstrass points of D_N on an elliptic curve on a higher-genus curve Intution (Mumford):

N-torsion points \leftrightarrow Weierstrass points of D_N on an elliptic curve on a higher-genus curve

Numerical "evidence": as *N* grows,

#(Weierstrass points of D_N) = $gN^2 + O(N)$

Intution (Mumford):

N-torsion points \leftrightarrow Weierstrass points of D_N on an elliptic curve on a higher-genus curve

Numerical "evidence": as N grows,

#(Weierstrass points of D_N) = $gN^2 + O(N)$

Problem

How are Weierstrass points distributed on an algebraic curve?

Problem

Problem

Problem

Problem

Problem

How are Weierstrass points distributed on genus 1 curve X/\mathbb{C} ?

 \rightsquigarrow Weierstrass points distribute **uniformly**, w.r.t. $\mathbb{C} \to \mathbb{C}/\Lambda$

Problem

Problem

Problem

Problem

Problem

How are Weierstrass points distributed on higher genus curve X/\mathbb{C} ?

Theorem (Neeman, 1984)

Suppose X is a complex algebraic curve of genus $g \ge 2$. Then $W(D_N)$ distributes according to the Bergman measure as $N \to \infty$.

Harry Richman (U. Michigan)

Problem

How are Weierstrass points distributed on X/\mathbb{K} , *val* : $\mathbb{K}^{\times} \to \mathbb{R}$?

Source: Matt Baker's math blog

Problem

How are Weierstrass points distributed on $\frac{X}{K}$ X^{an}?

Source: Matt Baker's math blog

Problem

How are Weierstrass points distributed on $\frac{X}{K}$ X^{an}?

Source: Matt Baker's math blog

Theorem (Amini, 2014)

Suppose X^{an} is a Berkovich curve of genus $g \ge 2$. Then $W(D_N)$ distributes according to the Zhang measure as $N \to \infty$.

Harry Richman (U. Michigan)

Problem

How are Weierstrass points distributed on $\frac{X}{K}$ X^{an}?

Source: Matt Baker's math blog

Problem (Amini, 2014)

Does the distribution follow from considering only the skeleton $\Gamma \subset X^{\operatorname{an}}$?

Harry Richman (U. Michigan)

Problem

How are Weierstrass points distributed on $\frac{X}{K}$ X^{an}?

Source: Matt Baker's math blog

Problem (Amini, 2014)

Does the distribution follow from considering only the skeleton $\Gamma \subset X^{\operatorname{an}}$?

Harry Richman (U. Michigan)

Tropical curve (= a skeleton of X^{an})

Tropical curve $(= a \text{ skeleton of } X^{an})$ (combinatorics) = finite graph with edge lengths

Tropical curve $(= a \text{ skeleton of } X^{an})$ (combinatorics) = finite graph with edge lengths (alg. geometry) = model for a degenerating algebraic curve

Tropical curve (= a skeleton of X^{an}) (combinatorics) = finite graph with edge lengths (alg. geometry) = model for a degenerating algebraic curve

Example:
$$X_t = \{xyz - tx^3 + t^2y^3 + t^5z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

Tropical curve $(= a \text{ skeleton of } X^{an})$ (combinatorics) = finite graph with edge lengths (alg. geometry) = model for a degenerating algebraic curve

Example:
$$X_t = \{xyz - t^1x^3 + t^2y^3 + t^5z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

Tropical curve (= a skeleton of X^{an}) (combinatorics) = finite graph with edge lengths metric graph (alg. geometry) = model for a degenerating algebraic curve

Example:
$$X_t = \{xyz - t^1x^3 + t^2y^3 + t^5z^3 = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

Tropical curve = metric graph

alg. curve X		tropical curve Г
divisors $Div(X)$	\rightsquigarrow	divisors Div(Γ)
meromorphic functions	\rightsquigarrow	piecewise $\mathbb Z$ -linear functions
linear system $ D $	\rightsquigarrow	linear system $ D $
$=\mathbb{P}^{r}$		= polyhedral complex of dim $\geq r$
rank $r = \dim D $	\rightsquigarrow	rank $r = Baker-Norine rank$

Tropical curve = metric graph

alg. curve X		tropical curve Г
divisors Div(X)	\rightsquigarrow	divisors Div(Γ)
meromorphic functions	\rightsquigarrow	piecewise $\mathbb Z$ -linear functions
linear system $ D $	\rightsquigarrow	linear system D
$=\mathbb{P}^{r}$		= polyhedral complex of dim $\geq r$
rank $r = \dim D $	\rightsquigarrow	rank $r = Baker-Norine rank$

Intuition: linear equivalence on $\Gamma =$ "discrete current flow" $|D| = \{E \text{ lin. equiv. to } D, E \ge 0\}$

Tropical curve = metric graph

alg. curve X		tropical curve Г
divisors Div(X)	\rightsquigarrow	divisors Div(Γ)
meromorphic functions	\rightsquigarrow	piecewise $\mathbb Z$ -linear functions
linear system $ D $	\rightsquigarrow	linear system $ D $
$=\mathbb{P}^{r}$		= polyhedral complex of dim $\geq r$
rank $r = \dim D $	\rightsquigarrow	rank $r = Baker-Norine rank$

Intuition: linear equivalence on Γ = "discrete current flow" $|D| = \{E \text{ lin. equiv. to } D, E \ge 0\}$ *q*-reduced divisor $\operatorname{red}_{q}[D]$ = "energy-minimizing" divisor in |D|

Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Example:

Tropical curves: reduced divisors

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Example:

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Example:

What happens as q varies?

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

Tropical curve = metric graph

Intuition: q-reduced divisor $\operatorname{red}_q[D] =$ "energy-minimizing" divisor in |D|

How are Weierstrass points distributed on a tropical curve?

Definition: Γ = metric graph, D_N divisor of degree N \rightsquigarrow Baker–Norine rank $r = r(D_N)$

$$W(D_N) = \{x \in X : \operatorname{red}_x[D_N] \ge (r+1)x\}$$

How are Weierstrass points distributed on a tropical curve?

Definition: Γ = metric graph, D_N divisor of degree N \rightsquigarrow Baker–Norine rank r = N - g when $N \gg 0$

$$W(D_N) = \{x \in X : \operatorname{red}_x[D_N] \ge (r+1)x\}$$

How are Weierstrass points distributed on a tropical curve?

Definition:
$$\Gamma$$
 = metric graph, D_N divisor of degree N
 \rightsquigarrow Baker–Norine rank $r = N - g$ when $N \gg 0$

$$W(D_N) = \{x \in X : \operatorname{red}_x[D_N] \ge (r+1)x\}$$

Observation: as N grows,

#(Weierstrass points of D_N) = gN + O(1) ...

How are Weierstrass points distributed on a tropical curve?

Definition:
$$\Gamma$$
 = metric graph, D_N divisor of degree N
 \rightsquigarrow Baker–Norine rank $r = N - g$ when $N \gg 0$

$$W(D_N) = \{x \in X : \operatorname{red}_x[D_N] \ge (r+1)x\}$$

Observation: as N grows,

#(Weierstrass points of D_N) = gN + O(1) ...

EXCEPT sometimes #(Weierstrass points) = ∞

Example: Genus $g(\Gamma) = 1$:

degree D = 6,

Example: Genus $g(\Gamma) = 1$:

Example: Genus $g(\Gamma) = 3$:

degree D = 4,

Example: Genus $g(\Gamma) = 3$:

___ ▶

3

Example: Genus $g(\Gamma) = 3$:

degree D = 4,

Example: Genus $g(\Gamma) = 3$:

3

Example: Genus $g(\Gamma) = 3$:

< 67 ▶

3

In general, this problem doesn't happen!

Theorem (R)

For a generic divisor class [D], the Weierstrass locus W(D) is finite.

In general, this problem doesn't happen!

Theorem (R)

For a generic divisor class [D], the Weierstrass locus W(D) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing W(D) is finite?

In general, this problem doesn't happen!

Theorem (R)

For a generic divisor class [D], the Weierstrass locus W(D) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing W(D) is finite for generic [D]?

In general, this problem doesn't happen!

Theorem (R)

For a generic divisor class [D], the Weierstrass locus W(D) is finite.

So, we can still ask

Problem

How are Weierstrass points distributed supposing W(D) is finite for generic [D]?

Theorem (R)

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

(日) (周) (三) (三)

 $\Gamma=electrical$ network by replacing each edge \rightsquigarrow resistor

э

 $\Gamma =$ electrical network by replacing each edge \rightsquigarrow resistor Given $y, z \in \Gamma$, let

$$j_z^y = \begin{pmatrix} \text{voltage on } \Gamma \text{ when } 1 \text{ unit of } \\ \text{current is sent from } y \text{ to } z \end{pmatrix}$$

By Ohm's law, **current** = $\frac{\text{voltage}}{\text{resistance}} = \text{slope of } j_z^y$

 Γ = electrical network by replacing each edge \rightsquigarrow resistor Given $y, z \in \Gamma$, let

Example: current = $(j_z^y)'$ $5 \frac{5}{12}$ y $1 \frac{2}{12}$ $1 \frac{1}{12}$ $1 \frac{1}{12}$ 0

satisfies Laplacian $\Delta(j_z^y) = z - y$

Electrical networks: Canonical measure

 $\Gamma=\mathsf{metric}\;\mathsf{graph}$

= 1 - (current through *e* when ...)

Electrical networks: Canonical measure

 $\Gamma=\text{metric graph}$

Definition ("electrical" version, Chinburg–Rumely–Baker–Faber) Zhang's **canonical measure** μ on an edge is the "current defect"

 $\mu(e)=$ current bypassing e when 1 unit sent from e^- to e^+ = 1 - (current through e when ...)

Electrical networks: Canonical measure

 $\Gamma=\mathsf{metric}\;\mathsf{graph}$

Definition ("electrical" version, Chinburg-Rumely-Baker-Faber)

Zhang's canonical measure μ on an edge is the "current defect"

 $\mu(e) =$ current bypassing e when 1 unit sent from e^- to e^+ = 1 - (current through e when ...)

Generally:

- $0 \le \mu(e) \le 1$
- $\mu(e) = 0 \Leftrightarrow e$ a bridge
- $\mu(e) = 1 \Leftrightarrow e \text{ a loop}$

Foster's Theorem: $\mu(\Gamma) = \sum_{e \in E} \mu(e) = g$

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

Namely, for any edge e

$$\frac{\#(W(D_N)\cap e)}{N}\to \mu(e) \qquad \text{as}\qquad N\to\infty.$$

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

Namely, for any edge e

$$rac{\#(W(D_N)\cap e)}{N} o \mu(e) \qquad {\sf as} \qquad N o \infty.$$

Idea:

(discrete current flow)
$$\xrightarrow{N o \infty}$$
 (continuous current flow)

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

Namely, for any edge e

$$rac{\#(W(D_N)\cap e)}{N} o \mu(e) \qquad {\sf as}\qquad N o\infty.$$

Idea:

$$(ext{discrete current flow}) \xrightarrow{N o \infty} (ext{continuous current flow}) \ \uparrow \ (ext{canonical measure } \mu(e)$$

For a sequence of generic divisor classes $[D_N]$ on Γ , the Weierstrass locus $W(D_N)$ distributes according to Zhang's canonical measure μ .

Namely, for any edge e

$$rac{\#(W(D_N)\cap e)}{N} o \mu(e) \qquad {\sf as} \qquad N o \infty.$$

Idea:

$$\begin{array}{ccc} (\text{discrete current flow}) & \xrightarrow{N \to \infty} & (\text{continuous current flow}) \\ & \uparrow & & \uparrow \\ \#(\text{Weierstrass points on } e) & & \text{canonical measure } \mu(e) \end{array}$$
References

David Mumford (1977)

Curves and their Jacobians

The University of Michigan Press, Ann Arbor, MI.

Amnon Neeman (1984)

The distribution of Weierstrass points on a compact Riemann surface Ann. of Math. **120** 317–328.

Shouwu Zhang (1993) Admissable pairing on a curve Invent. Math. **112** 171–193.

Matt Baker and Xander Faber (2006) Metrized graphs, Laplacian operators, and eletrical networks Amer. Math. Soc., Providence, RI.

Omid Amini (2014)

Equidistribution of Weierstrass points on curves over non-Archimedean fields preprint, arXiv:1412.0926v1.

Weierstrass points on a tropical curve

Thank you!

Harry Richman (U. Michigan)