Uniform bounds on tropical
torsion points
ar $X_{\text {iv }}$: 2112.00168

Harry Richman

TG:F Seminar

21 January 2022

What are torsion points?
$A=$ abelian group, n-torsion sulgruns $A[n]=\{a \in A: n \cdot a=0\}$ torsion subgroup Actors $=\bigcup_{n \geq 1} A[n]$

Ex. $\quad A=\mathbb{R} / \mathbb{Z}$

ALI]

$A[3]$

$A[6]$

Ex. $\quad A=\mathbb{R}^{2} / \mathbb{R}^{2}$
$A[1]$

What are torsion points?
$A=$ abelian group, n-torsion sulgruns $A[n]=\{a \neq A: n \cdot a=0\}$
torsion subgroup Atoms $=\bigcup_{n \geq 1} A[n]$
Ex. $A=\mathbb{R}^{2} / \mathbb{R}^{2}$

For this talk: always have

$$
\begin{aligned}
& A=\operatorname{Jac}(X) \quad \text { or } \quad A=\operatorname{Jac}(\Gamma) \quad \Rightarrow \quad A_{\text {tors }} \cong \mathbb{Q}^{n} / \mathbb{R}^{n} \\
& \text { algebraic curve } \\
& \cong \mathbb{R}^{2 g} / \mathbb{R}^{2 g} \\
& \cong \mathbb{R}^{9} / \mathbb{Z}^{9}
\end{aligned}
$$

Why care about torsion points?

Start with rational points on varieties, $X(\mathbb{Q})=X \cap \mathbb{Q}^{n}$

Fermat Conjecture (Wiles et at) if $n \geq 3$,
\# \{solutions to $x^{n}+y^{n}=z^{n}$ in $\left[\mathbb{Q}^{3}\right\} /$ scaling $<\infty$

$$
\leqslant 4 ?
$$

Model Conjecture (Falling, 1983)

$$
X=\text { alg. curve if genus } \geq 2, \quad \# X(\mathbb{Q})<\infty
$$

Uniform Mordell Conjecture (Open)
$X=$ alg. curve of genus $g \geq 2 \quad \# X(\mathbb{Q}) \leqslant N(g)$

Why care about torsion points?Apply analogy:
rational pints on X

$$
\mathbb{Q}^{n} \cap X
$$

Model Conjecture (Palings, 1983)
$X=$ alg. curve if genus ≥ 2,

$$
\# X(\mathbb{Q})<\infty
$$

Uniform Mordell Conjecture (Open)
$X=$ alg. curve of genus $g \geq 2$

$$
\# X(\mathbb{Q}) \leq N(g)
$$

torsion points in Jacobian

$$
\text { Jack }(x)_{\text {tors }} \cap x \quad \longrightarrow \text { using embedding }
$$

Q^{n} / \mathbb{Z}^{n}

Manin - Mumford Conjecture (Raynand, 1983)
$X=$ alg. curve of genus ≥ 2,

$$
\#\left(L_{q}(x) \cap J_{a c}(x) \text { tors }\right)<\infty
$$

Uniform Manin-Mumford Conj. $\left.\quad \begin{array}{l}\text { Kuhne. } \\ \text { Looper-Silvernan-Wilmes }\end{array}\right)$
$X=$ alg. curve of genus $g \geq 2$,

$$
\#\left(L_{q}(x) \cap J_{a c}(x) \text { tors }\right) \leqslant N(g)
$$

Why care about torsion points?

Apply analogy:
rational points on X
$\mathbb{Q}^{n} \cap X$
torsion points in Jacobian

$$
\operatorname{Jac}(x)_{\text {tors }} \wedge x
$$

Apply another analogy:

$$
\begin{aligned}
& \text { algebraic curve } \longleftrightarrow \begin{array}{c}
\text { tropical curve } \\
X
\end{array} \\
& \operatorname{Jac}(x)
\end{aligned}
$$

Top. Manin-Mumford Conjecture (Raynand, 1983)
$\Gamma=\operatorname{aigh.}_{\text {alg. }}$ carve of genus ≥ 2,

$$
\#\left(L_{q}(\Gamma) \cap J_{a c}(\Gamma) \text { tors }\right)<\infty
$$

Top. $\frac{\text { Uniform Manin-Mumford }}{\text { Crops }}$ Conj. $\left.\quad \begin{array}{l}\text { Kühne, } \\ \text { Looper-Silluman-Wilues }\end{array}\right)$
$\Gamma=$ alg carve of genus $g \geq 2$,

$$
\#\left(L_{q}(r) \cap J_{a c}(\Gamma) \text { tors }\right) \leqslant N(g)
$$

Tropical curves $=$ metric graph
$\Gamma=(G, l)$ where $G=(V, E)$ finite, connected graph $\ell: E \rightarrow \mathbb{R}>0 \quad$ length function on edges

Ex.

$g=0$

$g=1$

$g=2$

The genus of Γ is $g=\operatorname{dim} H_{1}(\Gamma, \mathbb{R})$

Tropical curves: Divisors \& Jacobian

A divisor on Γ is a formal \mathbb{Z}-sum of points in Γ

Ex. $\quad D=x+y+2 z$

A divisor is effective if all coeffs, are ≥ 0.

The degree of a divisor is sum of coeffs.

$$
\operatorname{deg}\left(\sum_{x \in \Gamma} a_{x} \cdot x\right)=\sum_{x \in \Gamma} a_{x}
$$

in \mathbb{Z}

The Jacobian of Γ

$$
\operatorname{Jac}(\Gamma)=P_{i c}{ }^{\circ}(\Gamma)=\left(\begin{array}{ccc}
\text { degree } & 0 & \text { divisors } \\
\text { on } & \Gamma
\end{array}\right) /\binom{\text { tropical }}{\text { linear equivalence }}
$$

Linear equivalence: Discrete case
$G=(V, E)$ graph i.e. unit edge lengths

Equivalence relation generated by "firing" moves

Ex.

data $=$ choose induced sulograph
$A \subset G$

Ex.

Linear equivalence: Continuous case
$\Gamma=(G, l) \quad$ arbitrary edge lengths $\mathbb{R}>0$

Equivalence relation generated by "continnous-firing" moves, data: (A, ε)

Ex.

closed subset
moving chips move same distance on all edges

Ex.

Tropical curves and Jacoblans
$\Gamma=(G, \ell) \quad$ tropical curve, $\quad J_{a c}(\Gamma)=\operatorname{Div}^{\circ}(\Gamma) /$ (linear equivalence)

Abel -Jacobi eunbeddy: choose q $\in \Gamma$
$\iota_{q}: \Gamma \longrightarrow \operatorname{Jac}(\Gamma)$

$$
x \quad \mapsto \quad[x-q]
$$

Theorem (Mikhalkir-Zarkhov) if Γ has genus g,

$$
\operatorname{Sac}(r) \cong \mathbb{R}^{9} / \mathbb{Z}^{9} \quad \Rightarrow J_{a c}(r)_{\text {tors }} \cong \mathbb{Q}^{9} / \mathbb{Z}^{9}
$$

$$
H^{\prime}(r, \mathbb{R})^{\sim} / H_{1}(r, \mathbb{Z})
$$

Tropical curves and Jacoblans
$\Gamma=(G, \ell) \quad$ tropical curve, $\quad \operatorname{Jac}(\Gamma)=\operatorname{Div}^{\circ}(\Gamma) /$ (linear equivalence)

Theorem (An-Baker-Kuperberg - Shokrich)
U_{p} to linear equivalence, a divisor class $[D]$ of deg. 0 has a unique* representative whose positive support lies in an * up to ching brat, edge set of G whose complement is a spanning tree.

Ex. $\Gamma=\prod^{x}$ = basepoint , three types ${ }^{*}$ of divisor classes in Jay (Γ) :

Tropical curves and Jacoblans
$\Gamma=(G, \ell) \quad$ tropical curve, $\quad J_{a c}(\Gamma)=\operatorname{Div}^{0}(\Gamma) /$ (linear equivalence)

Theorem (An-Baker-Kuperberg - Shokrich)
U_{p} to linear equivalence, a divisor class $[D]$ of deg. 0 has a unique* representative whose positive support lies in an edge set of G whose complement is a spanning tree.

Ex. $\Gamma=\prod^{x=\text { basepoint }}$, three types of divisor classes in Jay (Γ) :

$$
\{\quad(1)
$$

$$
\left.(\sqrt[1]{ })^{-2}\right\}
$$

Theorem $\Rightarrow \operatorname{Jac}(\Gamma)$ decomposes as union of cells indexed by spanning trees of $\Gamma=(G, l)$

Tropical curves and Jacobians

Tropical curves and Jacobian
Ex. $\Gamma={ }_{2}$

Multiples of $[x-y]$ when

Exercise On tropical curve

$\Rightarrow[x-y]$ is 5 -torsion
divisor class $[x-y]$ is $(2 n+1)$ - torsion

Tropical torsion points: Failure of finite bounds

Fact: In a graph Γ wI unit edge lengths, all vertices are torsion points
Ex. ID
G Vertex-supported divisors form "critical group" of G.

$$
G \#(\text { critical } g p)=\#(\text { spanning trass } \& G)
$$

Tropical torsion points: Failure of Finite bounds

Fact: In a graph Γ ul unit edge lengths, all vertices are torsion points

$$
\text { Ex. } I D
$$

G Vertex-supported divisors form "critical group" of G.
\rightarrow rational, by rescaloy δ subdividing
Fact: In a graph Γ ul unit edge lengths, there are ∞-many torsion points, i.e. $\#\left(c_{q}(\Gamma) \cap J_{\text {ac }}(\Gamma)\right.$ tors $)=\infty$

Ex.

\Rightarrow Tropical "Maniu-Mumford Conjecture" fails

Tropical torsion points: Failure of finite bounds

Fact: In a graph Γ w/ arbitrary edge lengths, if a single edge contains 2 torsion points, then it contains ∞-many

Ex. $\Gamma=$
\downarrow
$\mathbb{R}^{9} / \mathbb{Z}^{9} \supset \mathbb{Q}^{9} / \mathbb{Z}^{9}$
\Rightarrow Tropical "Mania - Mumford Conjecture" really fails, i.e- locally

Tropical torsion points: Results

Theorem (R_{1}) [Conditional Uniform tropical Manir-Mamford]
For a metric graph Γ of genus g'
if the number of torsion points is finite then

$$
\#\left(L_{q}(\Gamma) \cap J \text { ac }(\Gamma)_{\text {tors }}\right) \leq 3 g-3
$$ finite then \# edges in G

Theorem (R.) [General tropical Manis-Mumford]
If G is a biconnected graph of genus $g \geq 2$,
then $\Gamma=(G, l)$ has finitely many torsion points for very general edge lengths $l: E(G) \rightarrow \mathbb{R}_{>0}$

Tropical torsion points: Results

Theorem (R.) [General tropical Manis-Mumford]

If G is a biconuected graph of genus $g \geq 2$, then $\Gamma=(G, l)$ has finitely many torsion points for very general edge lengths $\left\{l: E(G) \rightarrow \mathbb{R}_{>0}\right) \cong \mathbb{R}^{\# E}$

- "bicounceted" ensures that Γ "behaves like" genus ≥ 2 Ex. not

- "very general" in \mathbb{R}^{n} means away from countable collection of positive - codim. algebraic subsets,

Ex. $U_{1}=\mathbb{R}^{n} \searrow\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$ where some $\left.x_{i} \in \mathbb{Q}\right\}$

Ex. $U_{2}=\mathbb{R}^{n} \searrow\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$ where $f\left(x_{1}, \ldots, x_{n}\right)=0$ for some polynomial wi Q roofs, $\}$

Tropical torsion points: Results

Theorem (R.) [General tropical Manis-Mumford]

If G is a biconuected graph of genus $g \geq 2$, then $\Gamma=(G, l)$ has finitely many torsion points for very general edge lengths $l: E(G) \rightarrow \mathbb{R}_{>0}$

Proof Idea:

- Torsion condition on $[x-y]$ equivalent to rational slopes on "unit potential function" $j^{x}: \Gamma \rightarrow \mathbb{R}$
- Kirchhoff: Each slope of $j^{x} y$ is ratio of \mathbb{Z}-polynomial of edge lengths $\quad \ell: E \rightarrow \mathbb{R}_{>0}$
- $\left\{f\left(x_{1}, \ldots, x_{n}\right) \notin \mathbb{Q}\right.$ for \mathbb{Z}-polynomials $\left.f\right\}$ forms countable collection

Tropical torsion points: Higher degree
Higher-degree Abel-Jacdbi embedding, choose $Q \in \operatorname{Dis}^{d}(\Gamma)$

$$
\begin{aligned}
L_{[Q]}^{(d)}: \Gamma \times \cdots \times \Gamma & \longrightarrow J_{a c}(\Gamma) \\
\left(x_{1}, \cdots, x_{d}\right) & \mapsto\left[x_{1}+\cdots+x_{d}-Q\right]
\end{aligned}
$$

Problem: When is

$$
\#\left(l_{[Q]}^{(d)}\left(\Gamma^{d}\right) \cap J_{a c}(\Gamma) \text { tors }\right)<\infty ?
$$

Tropical torsion points: Higher degree
Higher-degree Abel-Jacdbi embedding, choose $Q \in \operatorname{Dis}^{d}(\Gamma)$

$$
\begin{aligned}
L_{[Q]}^{(d)}: \Gamma \times \cdots \times \Gamma & \longrightarrow J_{a c}(\Gamma) \\
\left(x_{1}, \cdots, x_{d}\right) & \mapsto\left[x_{1}+\cdots+x_{d}-Q\right]
\end{aligned}
$$

Problem: When is

$$
\#\left(l_{[Q]}^{(d)}\left(\Gamma^{d}\right) \cap J_{a c}(\Gamma) \text { tors }\right)<\infty ?
$$

Theorem (R.) [Conditional uniform higher-degree..]
If it is finite, then

$$
\#\left(l_{[Q]}^{(d)}\left(\Gamma^{d}\right) \cap J_{a c}(\Gamma) \text { tors }\right) \leq\binom{ 3 g+3}{d}
$$

Tropical torsion points: Higher degree

Higher-degree Abel-Jacobi embedding, choose $Q \in \operatorname{Dis}^{d}(\Gamma)$

$$
\begin{aligned}
L_{[Q]}^{(d)}: \Gamma \times \cdots \times \Gamma & \longrightarrow J_{a c}(\Gamma) \\
\left(x_{1}, \cdots, x_{d}\right) & \mapsto\left[x_{1}+\cdots+x_{d}-Q\right]
\end{aligned}
$$

Problem: When is

Theorem (R.)
If G has independent girth $\gamma^{\text {ind }}(G) \leqslant d$, then it is not finite.

Otherwise, if $\gamma^{\text {ind }}(G)>d$ then it is finite for $\Gamma:(G, l)$ for very general edge lengths $l: E(G) \rightarrow \mathbb{R}>0$
$\left[\right.$ Note: $\gamma^{\text {ind }}(G) \geq 2 \quad$ biconnected components have $\left.g \geq 2\right]$

Independent girth

$$
G=(U, E)
$$

Recall girth is length of shortest cycle

$$
\gamma(G)=\min _{C \in C(G)}\{\# E(C)\}, \quad C(G)=\{\text { all cycles of } G\}
$$

Let $r^{\perp}: E(G) \rightarrow \mathbb{Z}$ denote rank of cographic matroid, ie.

$$
r k^{\perp}(A)=\# A+\underbrace{1-h_{0}(G \backslash A)}_{\leqslant 0} \text { for } A \subset E
$$

Defin The independent girth of G is

$$
\gamma^{\text {ind }}(G)=\min _{C \in C(G)}\left\{r k^{\perp}(E(C))\right\} \quad \gamma(G)
$$

\rightarrow Where has this been studied?

Thanks!

Uniform bounds on tropical torsion points

Harry Richman

TG:F Seminar

21 January 2022

