Distance matrices f equilibrium measures
on trees

Harry Richman
7 December 2022 Matsen Lab, Fred Hutch

Distance matrices f equilibrium measures on trees

joint work w/
Farbod Shokreh, Chenxi Wa
U. Washing ton
V. Wisconsin

Distance matrices

Problem What does the determinant of a distance matrix tell us "combinatorially"?

tree

$$
D=\left[\begin{array}{lllllll}
v_{1} \\
v_{2} \\
v_{3} & v_{2} & v_{3} & \cdots & v_{7} \\
0 & 1 & 2 & 2 & 3 & 3 & 4 \\
1 & 0 & 1 & 1 & 2 & 2 & 3 \\
2 & 1 & 0 & 2 & 3 & 3 & 4 \\
2 & 1 & 2 & 0 & 1 & 1 & 2 \\
3 & 2 & 3 & 1 & 0 & 2 & 3 \\
3 & 2 & 3 & 1 & 2 & 0 & 1 \\
4 & 3 & 4 & 2 & 3 & 1 & 0
\end{array}\right]
$$

distance matrix all nodes. internal included

Distance matrices

Problem what does the determinant of a distance submatrix tell us "combinatorially"?

tree

$$
D[s]=\left[\begin{array}{llll}
0 & 2 & 3 & 4 \\
2 & 0 & 3 & 4 \\
3 & 3 & 0 & 3 \\
4 & 4 & 3 & 0
\end{array}\right] \text { log. only }
$$

distance subumatrix

Equilibrium measures as "Potential theory"

Problem How do particles "distribute" along a region. given repulsive potential $U(x, y)$?

$$
u(x, y)=-\ln |x-y|
$$

1-dim tree

Problem What does the determinant of a distance matrix tell us "combinatorially"?

Problem How do particles "distribute" along a tree. given repulsion function $U(x, y)$?

Distance matrices

Problem What does the determinant of
a distance matrix tell us "combinatorially"?

What do we mean?

Ex. Matrix tree theorem:

Laplacian matrix ns number of spanning trees

Aside: Spanning trees

A spanning tree is a subgraph which "spanning" - contains all vertices
"tree" $\left\{\begin{array}{l}\text { - contains no cycles } \\ \text { - is connected }\end{array}\right.$

Ex.

\leadsto spanning trees

G

Aside: Laplacian matrices $L=\left(\begin{array}{c}\text { degree }\end{array}\right)$ - (adjacency $\left.\begin{array}{c}\text { matrix }\end{array}\right)$

Problem What does the determinant of a Laplacian matrix tell us "combinatorially"?

tree

$$
L=\begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{7}
\end{gathered}\left[\begin{array}{ccccccc}
v_{1} & v_{2} & v_{3} & & \cdots & & v_{7} \\
-1 & -1 & & & & & \\
& -1 & 1 & & & & \\
& & & 3 & -1 & -1 & \\
& & & -1 & 1 & & \\
& & & & & 2 & -1 \\
\hline
\end{array}\right]
$$

Laplacian matrix

Aside: Laplacian matrices

Problem What does the determinant of a Laplacian matrix tell us "combinatorially"?

Note: $\operatorname{det} L=0 \quad \ddot{\sim}$

Theorem (Kirchhoff 1847. "Matrix - tree theorem") Given graph G, Laplacian matrix L
$\operatorname{det} L[\bar{q}]=\#\{$ spanning trees of $G\}$
"q-reduced Laplacian", amy $q \in V$

Aside: Laplacian matrices
Theorem (Kirchhoff) aet $L[\bar{q}]=\#\{$ spanning trees \& $G\}$ "reduced Loplacinn"

Ex.

tree

$$
\begin{aligned}
& L=\left.\begin{array}{ccccccc}
v_{1} & v_{2} & v_{2} & v_{3} & & \cdots & \\
v_{3} & -1 & & & & & \\
-1 & 3 & -1 & -1 & & & \\
& -1 & 1 & & & & \\
& -1 & & 3 & -1 & -1 & \\
& v_{7} & & & -1 & 1 & \\
\\
& & & -1 & & 2 & -1 \\
& & & & & -1 & 1
\end{array}\right] \\
& \Rightarrow \operatorname{det} L\left[v_{1}\right]=1
\end{aligned}
$$

Distance matrices
Problem What does the determinant tell us?

tree

$$
D=\quad \vdots \quad v_{1}\left[\begin{array}{lllllll}
v_{1} & v_{2} & v_{3} & & \cdots & & v_{7} \\
v_{2} & 1 & 2 & 2 & 3 & 3 & 4 \\
1 & 0 & 1 & 1 & 2 & 2 & 3 \\
2 & 1 & 0 & 2 & 3 & 3 & 4 \\
2 & 1 & 2 & 0 & 1 & 1 & 2 \\
3 & 2 & 3 & 1 & 0 & 2 & 3 \\
3 & 2 & 3 & 1 & 2 & 0 & 1 \\
4 & 3 & 4 & 2 & 3 & 1 & 0
\end{array}\right]
$$

distance matrix

$$
\Rightarrow \operatorname{det} D=\frac{192}{2}
$$

combinatorial info?

Distance matrices
Problem What does the determinant tell us?

tree

$$
D=v_{3}\left[\begin{array}{lllllll}
v_{1} \\
v_{2} & v_{3} & v_{3} & 1 & 2 & 2 & 3 \\
0 & 0 & 1 & 1 & 2 & 2 & 3 \\
2 & 1 & 0 & 2 & 3 & 3 & 4 \\
2 & 1 & 2 & 0 & 1 & 1 & 2 \\
3 & 2 & 3 & 1 & 0 & 2 & 3 \\
3 & 2 & 3 & 1 & 2 & 0 & 1 \\
4 & 3 & 4 & 2 & 3 & 1 & 0
\end{array}\right]
$$

distance matrix

Theorem (Graham-Pollak, 1971)

$$
\operatorname{det} D=(-1)^{n-1} 2^{n-2}(n-1)
$$

where $n=\# \&$ vertices

Distance matrices
Problem What does the determinant tell us?

tree

$$
D[s]=\left[\begin{array}{llll}
0 & 2 & 3 & 4 \\
2 & 0 & 3 & 4 \\
3 & 3 & 0 & 3 \\
4 & 4 & 3 & 0
\end{array}\right] \quad \text { log. only }
$$

distance submatrix

$$
\leadsto \operatorname{det} D[s]=-252 \text { ?? }
$$

1) No previonily known combinatorial interpretation, to my knowledge...

Distance matrices

$$
\operatorname{det} D=(-1)^{n-1} 2^{n-2}(n-1)
$$

Theorem (R-Shokrich - Wu)
Given a tree $G=(V, E)$
a vertex subset $S \subset V$
corresponding distance submatrix $D[S]$,
then

$$
\operatorname{det} D[S]=(-1)^{|S|-1} 2^{|S|-2}\left((n-1) k(G ; S)-\sum_{F \cdot F_{2}(G ; S)}\left(\operatorname{deg}^{0}(F, *)-2\right)^{2}\right)
$$

where $n=$ \# vertices
$K_{1}(G ; S)=\# S$-rooted spannity forests
$F_{2}(G ; s)=(S, *)-$ rooted spanning forests
$\operatorname{deg}^{0}(F, *)=$ out \cdot degree \& flouting component

Ru: $F_{1}(G: S) \leftrightarrow$ spang the G / S
Distance matrices: spanning forests
Given graph $G=(V, E)$

$$
K_{1}(G ; s)=\# F_{1}(G ; s)
$$

vertex subset $S<V$
Defin An S-rooted spanning forest $\& G$ is a subgraph which
"spanning" - contains all vertices of G
"forest" . contains no cycles
$S=$ lear set
"S-rooted" each connected component contains \int exactly one vertex of S " ∂ " exactly one vertex of S

Ex. $F_{1}(G ; s)=\{, \ldots, \cdots\}$

$$
\not \# F_{2}(0 ; s)=?
$$

Distance matrices: spanning forests
Given graph $G=(V, E)$

$$
F_{2}(0 ; s) c \text { 2-romp. Forts }
$$

$$
\text { vertex subset } S \subset V
$$

Defin An (S,*) - rooted spanning forest $\& G$ is a subgraph which
"spanning" - contains all vertices of G
"forest" - contains no cycles " $(S, *)$-rooted" each connected component contains one vertex
\& S, PLUS a "floating" component $=: F(*)$

$$
\text { Ex. } \mathcal{F}_{2}(\omega ; s)=\{>, \ldots,
$$

Distance matrices: spanning forests
Given graph $G=(V, E)$
vertex subset $S<V$
$(S, *)$ - rooted spanning forest $F \in \mathcal{F}_{2}(G ; S)$

Defin The out-degree $\operatorname{deg}^{\circ}(F, *)$ of the floating component is \#\{edges from $F(*)$ to outside $\}=: \# \partial F(*)$

Ex.

$$
\operatorname{deg}^{0}(F, *)=3
$$

$$
\operatorname{deg}^{0}(F, *)=4
$$

Aside: Transitions between $F_{1}(G ; s)$ and $F_{2}(G ; s)$ form interesting "Dyumusial system"

$$
\begin{aligned}
F_{1}(G ; s)= & \{>, \\
& \begin{array}{c}
\text { delete } \\
\text { ede } e \in T
\end{array} \\
F_{2}(G ; S)= & \left\{\begin{array}{r}
\text { add edge } \\
e \in \partial F(*)
\end{array}\right. \\
& \{, 1,
\end{aligned}
$$

A Fields Waal: June Huh

Distance matrices
Theorem (R-Shokrieh - Wu)

$$
\operatorname{det} D[S]=(-1)^{|s|-1} 2^{|s|-2}\left((n-1) k(G ; S)-\sum_{F \cdot F_{2}(G ; S)}(\operatorname{deg} 0(F, *)-2)^{2}\right)
$$

$$
\begin{aligned}
\Rightarrow \operatorname{det} D[s] & =-252 \\
& =(-1)^{3} 2^{2}\left((7-1) \cdot 13-\left(5 \cdot 0^{2}+7 \cdot 1^{2}+2 \cdot 2^{2}\right)\right) \\
& \#\{23
\end{aligned}
$$

Ex.

tree
distance submatrix

Distance matrices
Theorem (R-Shokrich - Wu)

$$
\operatorname{det} D[S]=(-1)^{|s|-1} 2^{|s|-2}\left((n-1) k_{1}(G ; S)-\sum_{F \cdot F_{2}(G ; S)}(\operatorname{deg}(F, *)-2)^{2}\right)
$$

How to prove?Equilibrium measures it potential theory on trees

Equilibrium measures "Potential theory"

Problem How do particles "distribute" along
a planar region. given repulsive potential $U(x, y)$?.

$$
U(x, y)=-\ln |x-y|
$$

2-dim region

Physics view:
A system changes over time to lower its "potential energy"

Equilibrium measures: planar case
For a planar region $R \subset \mathbb{R}^{2}$,
(1) Two -point potential

$$
U(x, y)=-\ln |x-y|
$$

(2) Linearity of potential

$$
U\left(\sum_{i} a_{i} x_{i}, \sum_{j} b_{j} y_{j}\right)=-\sum_{i} \sum_{j} a_{i} b_{j} \ln \left|x_{i}-y_{j}\right|
$$

(2) Continuous limit

2-dim region

$$
U(\mu, v)=-\iint \ln |x-y| d \mu(x) d v(y)
$$

Equilibrium measures: planar case
Physics Fact: On region $R \subset \mathbb{R}^{2}$, equilibrium is unique measure $\mu=\mu_{R}$ on ∂R such that

2-dim region

- $\mu(\partial R)=1 \Rightarrow$ conservation of mass
- $\mathcal{L}(\mu):=-\iint \log |x-y| d \mu(b) d \mu(k)$
is minimized
$V(\mu, \mu)$ self-repulsion potential

Equilibrium measures: trees
Problem How do particles "distribute" along a tree. given repulsive potential $U(x, y)$?
(1) Two-poent potential

$$
U(x, y)=-\operatorname{dist}(x, y)
$$

(2) Linearity of potential

1-dim tree

$$
\begin{aligned}
U\left(\sum_{i} a_{i} v_{i}, \sum_{j} b_{j} v_{j}\right) & =-\sum_{i} \sum_{j} a_{i} b_{j} \operatorname{dist}\left(v_{i}, v_{j}\right) \\
& \left.=-\left(a_{1} \cdots a_{n}\right][D]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]\right)
\end{aligned}
$$

Equilibrium measures: trees $G, s \subset V$
(Math Defin)
Physics Fact: The equilibrium vector is the (unique) vector $\vec{\mu} \in \mathbb{R}^{s}$ satisfying

- $\overrightarrow{\mathbb{1}} \cdot \vec{\mu}=1$

$$
\cdot \varepsilon(\vec{\mu})=-\vec{\mu}^{\top} D[s] \vec{\mu}
$$

-s" conservator of mass"
is minimized

1-dim tree

Equilibrium measures
Physics Fact: The equilibrium is the unique vector $\vec{\mu} \in \mathbb{R}^{s}$ satisfying

- $\overrightarrow{\mathbb{1}} \cdot \vec{\mu}=1$

$$
\text { - } \varepsilon(\vec{\mu})=-\vec{\mu}^{\top} D[s] \vec{\mu}
$$

is minimized
Ex. What happens in pactire?

tree

$$
D[s]=\left[\begin{array}{llll}
0 & 2 & 3 & 4 \\
2 & 0 & 3 & 4 \\
3 & 3 & 0 & 3 \\
4 & 4 & 3 & 0
\end{array}\right]
$$

distance subuatrix
\Rightarrow Computational demo. gradient descent

Equilibrium measures
Ex.
Equilibrium

$$
~>
$$

$$
\begin{aligned}
\substack{\text { equilibainm } \\
\text { ratio } \\
\text { d } \\
D \\
\text { distance }}
\end{aligned} \vec{\mu}=\left[\begin{array}{llll}
0 & 2 & 3 & 4 \\
2 & 0 & 3 & 4 \\
3 & 3 & 0 & 3 \\
4 & 4 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
6 \\
6 \\
5 \\
9
\end{array}\right]=\left[\begin{array}{ll}
6 & 3 \\
6 & 3 \\
6 & 3 \\
6
\end{array}\right] \quad \begin{aligned}
& \text { Recall: } \\
& \operatorname{det} D[s]=-252 \\
&
\end{aligned}
$$

* Technical detail:

Equilibrium measures $D[s]$ has signature $(1,|s|-1)$

Theorem (Lagrange multipliers \& linear algebra*)
Suppose $\vec{\mu}^{*}$ is the unique vector in \mathbb{R}^{S} satisfying

$$
\text { - } \overrightarrow{\mathbb{L}} \cdot \vec{\mu}=1
$$

$$
\text { - } \varepsilon(\vec{\mu})=-\vec{\mu}^{\top} D[s] \vec{\mu}
$$

is minimized
Then

$$
\varepsilon\left(\stackrel{\mu}{ }^{*}\right)=-\frac{\operatorname{det} D[s]}{\operatorname{cof} D[s]} \quad \cot A=\sum_{i, j}(-1)^{i+j} \operatorname{det} A_{i, j}
$$

where oof = "sum of cofactoss"
\leadsto Goal: Compute $\operatorname{det} D[s]=-(\operatorname{cof} D[s]) \cdot \varepsilon\left(\vec{\mu}^{*}\right)$

Equilibrium measures
Goal: Compute $\operatorname{det} D[s]=-(\operatorname{cof} D[s]) \cdot \mathcal{(}\left(\vec{\mu}^{*}\right)$

Theorem (Bapat-Sivasubramanian, et ali?) The equilibrium vector $\vec{\mu}^{*}=\sum_{i} \mu_{i}^{*} v_{i}$ is

$$
\mu_{i}^{*}=\frac{\sum_{T \in F_{1}}\left(2-\operatorname{deg}^{0}(T, i)\right)}{2 \cdot k_{1}(G ; S)}
$$

Theorem (Bapat - Sirasubramanian, 2011)

$$
\operatorname{cof} D[s]=(-2)^{|s|-1} k_{1}(G ; S)
$$

Generalizations: edge weights
Assign positive weight α_{e} to each edge $e \in E$

Ex.

edge - weighted tree

$$
D=\left[\begin{array}{ccc}
0 & \alpha_{1} & \alpha_{1}+\alpha_{2} \\
\alpha_{1} & 0 & \alpha_{2} \\
\alpha_{1}+\alpha_{2} & \alpha_{2} & 0 \\
\vdots & \vdots &
\end{array}\right]
$$

weighted distance
matrix

Theorem (Bapat - Kirkland - Neumann, 2005)

$$
\operatorname{det} D=(-1)^{n-1} z^{n-2}\left(\sum_{E} \alpha_{e} \prod_{E} \alpha_{e}\right)
$$

Generalizations: edge weights
Assign positive weight α_{e} to each edge $e \in E$

Ex.

edge - weighted tree
weighted distance
matrix
Theorem (R - Shokrieh - Wu)

$$
\operatorname{det} D[s]=(-1)^{|s|-1} 2^{|s|-2}\left(\sum_{E} \alpha_{e} \sum_{T \in F_{1}} w(T)-\sum_{F \cdot F_{2}}(\operatorname{deg}(F, *)-2)^{2} w(F)\right)
$$

Generalieations: graphs w/ cycles

$$
\nabla=\left[\begin{array}{lllll}
0 & 1 & 1 & 2 & 2 \\
1 & 0 & 2 & 1 & 2 \\
1 & 2 & 0 & 1 & 1 \\
2 & 1 & 1 & 0 & 1 \\
2 & 2 & 1 & 1 & 0
\end{array}\right]
$$

Ex.

(effective
resistance matrix
source

$$
R=\left[\begin{array}{ccccc}
0 & 8 / 11 & 8 / 11 & 10 / 11 & 13 / 11 \\
8 / 11 & 0 & 10 / 11 & 8 / 11 & 13 / 11 \\
8 / 11 & 10 / 11 & 0 & 6 / 11 & 7 / 11 \\
10 / 11 & 8 / 11 & 6 / 11 & 0 & 7 / 11 \\
13 / 11 & 13 / 11 & 7 / 11 & 7 / 11 & 0
\end{array}\right]
$$

Generalizations: "continuous" graphs

Ex.

graph G
metric graph Γ

Theorem ($R \cdot S-W$) Calculate equibibrim measure μ^{*} on Γ and "resistance every"

$$
\varepsilon\left(\mu^{*}\right):=-\int_{\Gamma} \int_{\Gamma} \Gamma(x, y) d \mu^{*}(x) d \mu^{*}(y)
$$

Thank you!

Harry Richman
7 December 2022 Matsen Lab, Fred Hutch

Remark Flavors if descretization

