Looking for a "Local" Gauss-Lucas Theorem

Harry Richman

University of Michigan
hrichman@umich.edu

July 28, 2017

Locating roots

Problem

How do roots of $f(x)$ determine roots of $f^{\prime}(x)$?

Locating roots: real case

Problem

How do roots of $f(x)$ determine roots of $f^{\prime}(x)$?

Locating roots: real case

Problem

How do roots of $f(x)$ determine roots of $f^{\prime}(x)$?

Locating roots: real case

Problem

How do roots of $f(x)$ determine roots of $f^{\prime}(x)$?

Theorem (Rolle)

Suppose $f(x) \in \mathbb{R}[x]$ with real roots $a_{1} \leq \cdots \leq a_{n}$. Then for any $i<j$, the closed interval

$$
I=\left[a_{i}, a_{j}\right] \subset \mathbb{R}
$$

contains some root of $f^{\prime}(x)$.

$$
f(x) \in \mathbb{R}[x]
$$

Locating roots: complex case

Problem

How do roots of $f(z)$ determine roots of $f^{\prime}(z)$?

$$
f(z) \in \mathbb{C}[z]
$$

Locating roots: complex case

Problem

How do roots of $f(z)$ determine roots of $f^{\prime}(z)$?

$$
f(z) \in \mathbb{C}[z]
$$

Locating roots: complex case

Problem

How do roots of $f(z)$ determine roots of $f^{\prime}(z)$?

Theorem (Gauss-Lucas)

Suppose $f(z) \in \mathbb{C}[z]$ with roots a_{1}, \ldots, a_{n}, and convex hull

$$
K=K\left(a_{1}, \ldots, a_{n}\right) \subset \mathbb{C}
$$

Then all roots of $f^{\prime}(z)$ lie inside K.

Locating roots: comparison

Theorem (Rolle)

Suppose $f(x) \in \mathbb{R}[x]$ with real roots $a_{1} \leq \cdots \leq a_{n}$. Then for any $i<j$, the closed interval

$$
I=\left[a_{i}, a_{j}\right] \subset \mathbb{R}
$$

contains some root of $f^{\prime}(x)$.

Theorem (Gauss-Lucas)

Suppose $f(z) \in \mathbb{C}[z]$ with roots a_{1}, \ldots, a_{n}, and convex hull

$$
K=K\left(a_{1}, \ldots, a_{n}\right) \subset \mathbb{C}
$$

Then K contains all roots of $f^{\prime}(z)$.

Locating roots: comparison

Theorem (Rolle)

Suppose $f(x) \in \mathbb{R}[x]$ with real roots $a_{1} \leq \cdots \leq a_{n}$. Then for any $i<j$, the closed interval

$$
I=\left[a_{i}, a_{j}\right] \subset \mathbb{R}
$$

contains some root of $f^{\prime}(x)$.

Theorem (Gauss-Lucas)

Suppose $f(z) \in \mathbb{C}[z]$ with roots a_{1}, \ldots, a_{n}, and convex hull

$$
K=K\left(a_{1}, \ldots, a_{n}\right) \subset \mathbb{C}
$$

Then K contains all roots of $f^{\prime}(z)$.

- local condition

Locating roots: comparison

Theorem (Rolle)

Suppose $f(x) \in \mathbb{R}[x]$ with real roots $a_{1} \leq \cdots \leq a_{n}$. Then for any $i<j$, the closed interval

$$
I=\left[a_{i}, a_{j}\right] \subset \mathbb{R}
$$

contains some root of $f^{\prime}(x)$.

Theorem (Gauss-Lucas)

Suppose $f(z) \in \mathbb{C}[z]$ with roots a_{1}, \ldots, a_{n}, and convex hull

$$
K=K\left(a_{1}, \ldots, a_{n}\right) \subset \mathbb{C}
$$

Then K contains all roots of $f^{\prime}(z)$.

- non-local condition
- local condition

Local Gauss-Lucas

Conjecture

For $f(z) \in \mathbb{C}[z]$ with roots at $a_{1}, a_{2}, a_{3} \in \mathbb{C}$, there is a compact region $I\left(a_{1}, a_{2}, a_{3}\right) \subset \mathbb{C}$ such that $f^{\prime}(z)$ has a root inside $I\left(a_{1}, a_{2}, a_{3}\right)$.

Local Gauss-Lucas: guesses?

Conjecture

For $f(z) \in \mathbb{C}[z]$ with roots at $a_{1}, a_{2}, a_{3} \in \mathbb{C}$, there is a compact region $I\left(a_{1}, a_{2}, a_{3}\right) \subset \mathbb{C}$ such that $f^{\prime}(z)$ has a root inside $I\left(a_{1}, a_{2}, a_{3}\right)$.

Local Gauss-Lucas: guesses?

Conjecture

For $f(z) \in \mathbb{C}[z]$ with roots at $a_{1}, a_{2}, a_{3} \in \mathbb{C}$, there is a compact region $I\left(a_{1}, a_{2}, a_{3}\right) \subset \mathbb{C}$ such that $f^{\prime}(z)$ has a root inside $I\left(a_{1}, a_{2}, a_{3}\right)$.

Guess 1

$I\left(a_{1}, a_{2}, a_{3}\right)=$ convex hull.

Local Gauss-Lucas: guesses?

Conjecture

For $f(z) \in \mathbb{C}[z]$ with roots at $a_{1}, a_{2}, a_{3} \in \mathbb{C}$, there is a compact region $I\left(a_{1}, a_{2}, a_{3}\right) \subset \mathbb{C}$ such that $f^{\prime}(z)$ has a root inside $I\left(a_{1}, a_{2}, a_{3}\right)$.

Guess 1

$I\left(a_{1}, a_{2}, a_{3}\right)=$ convex hull.

Guess 2

$I\left(a_{1}, a_{2}, a_{3}\right)=$ circumcircle.

Local Gauss-Lucas: false guess

Guess 1

$I\left(a_{1}, a_{2}, a_{3}\right)=$ convex hull.

$$
f(z)=z^{6}-1
$$

Local Gauss-Lucas: false guess

Guess 1

$I\left(a_{1}, a_{2}, a_{3}\right)=$ convex hull.

$$
f(z)=z^{6}-1
$$

Local Gauss-Lucas: false guess

Guess 2

$I\left(a_{1}, a_{2}, a_{3}\right)=$ circumcircle.

$$
f(z)=z^{6}-1
$$

Local Gauss-Lucas: false guess

Guess 2

$I\left(a_{1}, a_{2}, a_{3}\right)=$ circumcircle.

$$
f(z)=\left(z^{6}-1\right) \cdot \frac{z-1 / 2}{z-1}
$$

Local Gauss-Lucas: false guess

Guess 2

$I\left(a_{1}, a_{2}, a_{3}\right)=$ circumcircle.

$$
f(z)=\left(z^{6}-1\right) \cdot \frac{z-1 / 2}{z-1}
$$

Local Gauss-Lucas: false guess

Guess-2

$I\left(a_{1}, a_{2}, a_{3}\right)=$ circumcircle.

$$
f(z)=\left(z^{6}-1\right) \cdot \frac{z-1 / 2+\epsilon}{z-1}
$$

Local Gauss-Lucas: more guesses?

Conjecture

For $f(z) \in \mathbb{C}[z]$ with roots at $a_{1}, a_{2}, a_{3} \in \mathbb{C}$, there is a compact region $I\left(a_{1}, a_{2}, a_{3}\right) \subset \mathbb{C}$ such that $f^{\prime}(z)$ has a root inside $I\left(a_{1}, a_{2}, a_{3}\right)$.

Local Gauss-Lucas: more guesses?

Conjecture

For $f(z) \in \mathbb{C}[z]$ with roots at $a_{1}, a_{2}, a_{3} \in \mathbb{C}$, there is a compact region $I\left(a_{1}, a_{2}, a_{3}\right) \subset \mathbb{C}$ such that $f^{\prime}(z)$ has a root inside $I\left(a_{1}, a_{2}, a_{3}\right)$.
$\operatorname{Im}(x)$

Guess 3

$I\left(a_{1}, a_{2}, a_{3}\right)=2 \cdot($ circumcircle $)$.

Local Gauss-Lucas: more guesses?

Conjecture

For $f(z) \in \mathbb{C}[z]$ with roots at $a_{1}, a_{2}, a_{3} \in \mathbb{C}$, there is a compact region $I\left(a_{1}, a_{2}, a_{3}\right) \subset \mathbb{C}$ such that $f^{\prime}(z)$ has a root inside $I\left(a_{1}, a_{2}, a_{3}\right)$.
$\operatorname{Im}(x)$

Guess 3

$I\left(a_{1}, a_{2}, a_{3}\right)=2 \cdot($ circumcircle $)$.

Guess 4

$I\left(a_{1}, a_{2}, a_{3}\right)=$ circumcircle, if they span acute triangle.

References

E

Harry Richman (2017)
"Local" Gauss-Lucas theorem?,
MathOverflow, https://mathoverflow.net/q/262906

Looking for a "local" Gauss-Lucas theorem

Thank you!

