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Floor functions

The floor function sends continuous input to discrete output

bxc : R→ Z

Figure: Graph of f (x) = bxc
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Floor functions

A dilated floor function sends continuous input to discrete output

fα(x) := bαxc : R→ Z

 fα discretizes R
“at length scale α−1”

α−1

1

Figure: Graph of fϕ(x) = bϕxc, where ϕ = 1+
√

5
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Dilated floor functions: Why care?

Elementary number theory:

valp(n!) =

⌊
1

p
n

⌋
+

⌊
1

p2
n

⌋
+

⌊
1

p3
n

⌋
+ · · ·

Riemann zeta function:

ζ(s) :=
∑
n≥1

1

ns
satisfies

i.e. −α−s

s ζ(−s) is the Mellin transform of fα(x) = bαxc

Algebraic geometry: measuring singularities, minimal model program...
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Composing floor functions

Vague Question

What happens when we compose fα and fβ?
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Composing floor functions

Vague Question

What happens when we compose fα and fβ?

Example: f1 ◦ fϕ vs fϕ ◦ f1

Observations:

f1 ◦ fϕ 6= fϕ ◦ f1 f1 ◦ fϕ ≥ fϕ ◦ f1
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Composing floor functions

Example: f1 ◦ fϕ vs fϕ ◦ f1

Observations: f1 ◦ fϕ 6= fϕ ◦ f1 f1 ◦ fϕ ≥ fϕ ◦ f1

Problem A

For which (α, β) do we have

fα ◦ fβ = fβ ◦ fα?
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Composing floor functions: results

Problem A

For which (α, β) do we have fα ◦ fβ = fβ ◦ fα?
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Composing floor functions: results

Problem A

For which (α, β) do we have bα bβxcc = bβ bαxcc?

Theorem (Lagarias–Murayama–R)

All solutions to (A) are:

α

β

α = 1
m , β = 1

n

In fact:
⌊

1
m

⌊
1
n

⌋
x
⌋

=
⌊

1
mnx

⌋

⌊
1
p2 n
⌋

=
⌊

1
p

⌊
1
pn
⌋⌋

!

Harry Richman (U. Michigan) Dilated floor function commutators October 5, 2018 6 / 17



Composing floor functions: results

Problem A

For which (α, β) do we have bα bβxcc = bβ bαxcc?

Theorem (Lagarias–Murayama–R)

All solutions to (A) are:

α

β

α = 1
m , β = 1

n

In fact:
⌊

1
m

⌊
1
n

⌋
x
⌋

=
⌊

1
mnx

⌋

⌊
1
p2 n
⌋

=
⌊

1
p

⌊
1
pn
⌋⌋

!

Harry Richman (U. Michigan) Dilated floor function commutators October 5, 2018 6 / 17



Composing floor functions: results

Problem A

For which (α, β) do we have bα bβxcc = bβ bαxcc?

Theorem (Lagarias–Murayama–R)

All solutions to (A) are:

α

β

α = 1
m , β = 1

n

In fact:
⌊

1
m

⌊
1
n

⌋
x
⌋

=
⌊

1
mnx

⌋ ⌊
1
p2 n
⌋

=
⌊

1
p

⌊
1
pn
⌋⌋

!

Harry Richman (U. Michigan) Dilated floor function commutators October 5, 2018 6 / 17



Composing floor functions: results

Problem B

For which (α, β) do we have fα ◦ fβ ≥ fβ ◦ fα?
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Composing floor functions: results

Problem B

For which (α, β) do we have bα bβxcc ≥ bβ bαxcc?

Theorem (Lagarias–R)

All solutions to (B) are:

α

β
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Composing floor functions: results

α

β
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bα bβxcc ≥ bβ bαxcc: positive-dilation results

Theorem (Lagarias–R)

All positive solutions to (B) are:

α

β
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bα bβxcc ≥ bβ bαxcc: positive-dilation results

Coordinate change:

µ = 1
α , ν = β

α

α

β
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bα bβxcc ≥ bβ bαxcc: positive-dilation results

Coordinate change: µ = 1
α , ν = β
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bα bβxcc ≥ bβ bαxcc: positive-dilation results

Where do green solution curves come from?
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Proof ingredient: Beatty sequences

Parameter µ ≥ 1,

B(µ) = {bµc , b2µc , b3µc , . . .} ⊂ N

Note:
B(µ) = output values of fµ ◦ f1(x) = bµ bxcc

Example: ϕ = 1+
√

5
2 , B(ϕ) = {1, 3, 4, 6, 8, 9, 11, 12, . . .}

ϕ2 = 3+
√

5
2 , B(ϕ2) = {2, 5, 7, 10, 13, 15, 18, . . .}

Theorem (“Beatty’s Theorem,” Ostrowski, Hyslop, Aitken, ..)

If µ and ν are irrational and satsify 1
µ + 1

ν = 1, then

B(µ) ∩ B(ν) = ∅ and B(µ) ∪ B(ν) = N

i.e. their Beatty sequences partition N.
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Proof ingredient: Beatty sequences

Theorem (“Beatty’s Theorem” 1926)

Beatty sequences B(µ), B(ν) partition N, i.e.

B(µ) ∩ B(ν) = ∅ and B(µ) ∪ B(ν) = N

iff µ and ν are irrational and satsify 1
µ + 1

ν = 1.

Harry Richman (U. Michigan) Dilated floor function commutators October 5, 2018 10 / 17



Proof ingredient: Beatty sequences

Theorem (“Beatty’s Theorem” 1926)

Beatty sequences B(µ), B(ν) partition N, i.e.

B(µ) ∩ B(ν) = ∅ and B(µ) ∪ B(ν) = N

iff µ and ν are irrational and satsify 1
µ + 1

ν = 1.

Harry Richman (U. Michigan) Dilated floor function commutators October 5, 2018 10 / 17



Proof ingredient: Beatty sequences

Theorem (“Beatty’s Theorem” 1926)

Beatty sequences B(µ), B(ν) partition N, i.e.

B(µ) ∩ B(ν) = ∅ and B(µ) ∪ B(ν) = N

iff µ and ν are irrational and satsify 1
µ + 1

ν = 1.
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Proof ingredient: Beatty sequences

Proposition 1 (Lagarias–R)

Modified* Beatty sequences B(µ), B<(ν) partition N, i.e.

B(µ) ∩ B<(ν) = ∅ and B(µ) ∪ B<(ν) = N

iff µ and ν satsify 1
µ + 1

ν = 1.

Idea: “break ties” between µN and νN

Proposition 2 (Lagarias–R)

For parameters (α, β) > 0,

fα ◦ fβ ≥ fβ ◦ fα iff B(µ) ∩ B<(ν) = ∅

where µ = 1
α and ν = β

α .
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Proof ingredient: Beatty sequences

 Green solution curves come from Beatty sequences

How do we know there are no more solutions?
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Proof ingredient: Torus subgroups

Torus surface T = R2/Z2

A point (σ, τ) ∈ T generates a cyclic subgroup of T

Vague Question

When is (σ, τ) ∈ T a “minimal” generator for its subgroup?
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Proof ingredient: Torus subgroups

Torus surface T = R2/Z2

A point (σ, τ) ∈ T generates a cyclic subgroup of T
Example:
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Proof ingredient: Torus subgroups

Torus surface T = R2/Z2

A point (σ, τ) ∈ T generates a cyclic subgroup of T
Def. (σ, τ) is weakly minimal if

( 4
13 ,

3
13 )

Vague Question

When is (σ, τ) ∈ T a “minimal” generator for its subgroup?
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Proof ingredient: Torus subgroups

Torus surface T = R2/Z2

A point (σ, τ) ∈ T generates a cyclic subgroup of T
Def. (σ, τ) is strongly minimal if

( 4
13 ,

3
13 )

Vague Question

When is (σ, τ) ∈ T a “minimal” generator for its subgroup?
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Proof ingredient: Torus subgroups

Vague Question

When is (σ, τ) ∈ T a “minimal” generator for its subgroup?

(σ, τ) weakly minimal (σ, τ) strongly minimal
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Proof ingredient: Torus subgroups

Vague Question

When is (σ, τ) ∈ T a “minimal” generator for its subgroup?

(σ, τ) weakly minimal (σ, τ) strongly minimal

Proposition 3 (Lagarias–R)

If (σ, τ) is a weakly minimal generator, it is also strongly minimal.
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Proof ingredient: Torus subgroups

Proposition 3 (Lagarias–R)

If (σ, τ) is a weakly minimal generator, it is also strongly minimal.

All minimal generators of cyclic subgroups, in T:

σ

τ
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Composing floor functions: Why really care?

(Recall: P.N.T. says π(x) = #{prime p ≤ x} ≈ x
log x )

Riemann hypothesis: Π(x) :=
∑

p≤x log p

R. H. ⇔ Π(x) = x + O(x1/2+ε)

Mertens function:

M(x) :=
∑
n≤x

µ(x) where µ(x) ∈ {±1, 0} is the Möbius function

R. H. ⇔ M(x) = O(x1/2+ε)

Jean-Paul Cardinal (2010) defined a “2-dimensional analogue” of the
Mertens function
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R. H. ⇔ M(x) = O(x1/2+ε)

Jean-Paul Cardinal (2010) defined a “2-dimensional analogue” of the
Mertens function

Harry Richman (U. Michigan) Dilated floor function commutators October 5, 2018 14 / 17



Composing floor functions: Why really care?

Let {di} = {n,
⌊

1
2n
⌋
,
⌊

1
3n
⌋
,
⌊

1
4n
⌋
, . . . , 1} be the “almost divisors” of n.

In Cardinal’s matrix Mn, the entry in position i , j is

Mn(i , j) = M

(⌊
1

didj
n

⌋)
= M

(⌊
1

di

⌊
1

dj
n

⌋⌋)
= M

(⌊
1

dj

⌊
1

di
n

⌋⌋)

Theorem (Cardinal 2010)

Riemann hypothesis is equivalent to

‖Mn‖ = O(n1/2+ε) as n→∞.

Computational evidence suggests that ‖Mn‖ is better behaved than
Mertens function M(n) as n→∞ ...
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1

di

⌊
1

dj
n

⌋⌋)
= M

(⌊
1

dj

⌊
1

di
n

⌋⌋)
( Note: “almost divisors of almost divisors are almost divisors”! )

Theorem (Cardinal 2010)

Riemann hypothesis is equivalent to

‖Mn‖ = O(n1/2+ε) as n→∞.
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Dilated floor function commutators

  

Thank you!
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