Dilated floor functions and their commutators

Harry Richman joint w/ Jeff Lagarias and Takumi Murayama

University of Michigan

September 14, 2019
AMS Fall Sectional Meeting

Floor functions

The floor function sends continuous input to discrete output

$$
\lfloor x\rfloor: \mathbb{R} \rightarrow \mathbb{Z}
$$

Floor functions

The floor function sends continuous input to discrete output

$$
\lfloor x\rfloor: \mathbb{R} \rightarrow \mathbb{Z}
$$

Floor functions

The floor function sends continuous input to discrete output

$$
\lfloor x\rfloor: \mathbb{R} \rightarrow \mathbb{Z}
$$

Figure: Graph of $f(x)=\lfloor x\rfloor$

Floor functions

A dilated floor function sends continuous input to discrete output

$$
f_{\alpha}(x):=\lfloor\alpha x\rfloor: \mathbb{R} \rightarrow \mathbb{Z}
$$

Floor functions

A dilated floor function sends continuous input to discrete output

$$
f_{\alpha}(x):=\lfloor\alpha x\rfloor: \mathbb{R} \rightarrow \mathbb{Z}
$$

Figure: Graph of $f_{\varphi}(x)=\lfloor\varphi x\rfloor$, where $\varphi=\frac{1+\sqrt{5}}{2}$

Floor functions

A dilated floor function sends continuous input to discrete output

$$
f_{\alpha}(x):=\lfloor\alpha x\rfloor: \mathbb{R} \rightarrow \mathbb{Z}
$$

$\rightsquigarrow f_{\alpha}$ discretizes \mathbb{R}
"at length scale α^{-1} "

Figure: Graph of $f_{\varphi}(x)=\lfloor\varphi x\rfloor$, where $\varphi=\frac{1+\sqrt{5}}{2}$

Dilated floor functions: Why care?

Elementary number theory:

$$
\operatorname{val}_{p}(n!)=\left\lfloor\frac{1}{p} n\right\rfloor+\left\lfloor\frac{1}{p^{2}} n\right\rfloor+\left\lfloor\frac{1}{p^{3}} n\right\rfloor+\cdots
$$

Dilated floor functions: Why care?

Elementary number theory:

$$
\operatorname{val}_{p}(n!)=\left\lfloor\frac{1}{p} n\right\rfloor+\left\lfloor\frac{1}{p^{2}} n\right\rfloor+\left\lfloor\frac{1}{p^{3}} n\right\rfloor+\cdots
$$

Riemann zeta function:

$$
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}} \quad \text { satisfies } \quad \int_{0}^{\infty}\lfloor x\rfloor x^{-s} \frac{d x}{x}=\frac{1}{s} \zeta(s)
$$

Dilated floor functions: Why care?

Elementary number theory:

$$
\operatorname{val}_{p}(n!)=\left\lfloor\frac{1}{p} n\right\rfloor+\left\lfloor\frac{1}{p^{2}} n\right\rfloor+\left\lfloor\frac{1}{p^{3}} n\right\rfloor+\cdots
$$

Riemann zeta function:

$$
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}} \quad \text { satisfies } \quad \int_{0}^{\infty}\lfloor\alpha x\rfloor x^{-s} \frac{d x}{x}=\frac{\alpha^{s}}{s} \zeta(s)
$$

Dilated floor functions: Why care?

Elementary number theory:

$$
\operatorname{val}_{p}(n!)=\left\lfloor\frac{1}{p} n\right\rfloor+\left\lfloor\frac{1}{p^{2}} n\right\rfloor+\left\lfloor\frac{1}{p^{3}} n\right\rfloor+\cdots
$$

Riemann zeta function:

$$
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}} \quad \text { satisfies } \quad \int_{0}^{\infty}\lfloor\alpha x\rfloor x^{-s} \frac{d x}{x}=\frac{\alpha^{s}}{s} \zeta(s)
$$

i.e. $-\frac{\alpha^{-s}}{s} \zeta(-s)$ is the Mellin transform of $f_{\alpha}(x)=\lfloor\alpha x\rfloor$

Dilated floor functions: Why care?

Elementary number theory:

$$
\operatorname{val}_{p}(n!)=\left\lfloor\frac{1}{p} n\right\rfloor+\left\lfloor\frac{1}{p^{2}} n\right\rfloor+\left\lfloor\frac{1}{p^{3}} n\right\rfloor+\cdots
$$

Riemann zeta function:

$$
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}} \quad \text { satisfies } \quad \int_{0}^{\infty}\lfloor\alpha x\rfloor x^{-s} \frac{d x}{x}=\frac{\alpha^{s}}{s} \zeta(s)
$$

i.e. $-\frac{\alpha^{-s}}{s} \zeta(-s)$ is the Mellin transform of $f_{\alpha}(x)=\lfloor\alpha x\rfloor$

Algebraic geometry: measuring singularities, minimal model program...

Dilated floor functions: Why care?

Elementary number theory:

$$
\begin{aligned}
& \operatorname{val}_{p}(n!)=\left\lfloor\frac{1}{p} n\right\rfloor+\left\lfloor\frac{1}{p^{2}} n\right\rfloor+\left\lfloor\frac{1}{p^{3}} n\right\rfloor+\cdots \\
& \quad \stackrel{?}{=}\left\lfloor\frac{1}{p} n\right\rfloor+\left\lfloor\frac{1}{p}\left\lfloor\frac{1}{p} n\right\rfloor\right\rfloor+\left\lfloor\frac{1}{p}\left\lfloor\frac{1}{p}\left\lfloor\frac{1}{p} n\right\rfloor\right\rfloor\right\rfloor+\cdots
\end{aligned}
$$

Riemann zeta function:

$$
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}} \quad \text { satisfies } \quad \int_{0}^{\infty}\lfloor\alpha x\rfloor x^{-s} \frac{d x}{x}=\frac{\alpha^{s}}{s} \zeta(s)
$$

i.e. $-\frac{\alpha^{-s}}{s} \zeta(-s)$ is the Mellin transform of $f_{\alpha}(x)=\lfloor\alpha x\rfloor$

Algebraic geometry: measuring singularities, minimal model program...

Composing floor functions

Vague Question
 What happens when we compose f_{α} and f_{β} ?

Composing floor functions

Vague Question

What happens when we compose f_{α} and f_{β} ?

Figure: Graph of $f_{1} \circ f_{\varphi}=\lfloor\lfloor\varphi x\rfloor\rfloor$ where $\varphi=\frac{1+\sqrt{5}}{2}$

Composing floor functions

Vague Question

What happens when we compose f_{α} and f_{β} ?

Figure: Graph of $f_{\varphi} \circ f_{1}=\lfloor\varphi\lfloor x\rfloor\rfloor$ where $\varphi=\frac{1+\sqrt{5}}{2}$

Composing floor functions

Vague Question

What happens when we compose f_{α} and f_{β} ?
Example: $\quad f_{1} \circ f_{\varphi}$ vs $f_{\varphi} \circ f_{1}$

Observations:

Composing floor functions

Vague Question

What happens when we compose f_{α} and f_{β} ?
Example: $\quad f_{1} \circ f_{\varphi}$ vs $f_{\varphi} \circ f_{1}$

Observations:

Composing floor functions

Vague Question

What happens when we compose f_{α} and f_{β} ?
Example: $\quad f_{1} \circ f_{\varphi}$ vs $f_{\varphi} \circ f_{1}$

Observations: - $f_{1} \circ f_{\varphi} \neq f_{\varphi} \circ f_{1}$

Composing floor functions

Vague Question

What happens when we compose f_{α} and f_{β} ?
Example: $\quad f_{1} \circ f_{\varphi}$ vs $f_{\varphi} \circ f_{1}$

Observations:

- $f_{1} \circ f_{\varphi} \neq f_{\varphi} \circ f_{1}$
- $f_{1} \circ f_{\varphi} \geq f_{\varphi} \circ f_{1}$

Composing floor functions

Example: $\quad f_{1} \circ f_{\varphi}$ vs $f_{\varphi} \circ f_{1}$

Observations:

- $f_{1} \circ f_{\varphi} \neq f_{\varphi} \circ f_{1}$
- $f_{1} \circ f_{\varphi} \geq f_{\varphi} \circ f_{1}$

Problem A

For which (α, β) do we have

$$
f_{\alpha} \circ f_{\beta}=f_{\beta} \circ f_{\alpha} ?
$$

Composing floor functions

Example: $\quad f_{1} \circ f_{\varphi}$ vs $f_{\varphi} \circ f_{1}$

Observations:

- $f_{1} \circ f_{\varphi} \neq f_{\varphi} \circ f_{1}$
- $f_{1} \circ f_{\varphi} \geq f_{\varphi} \circ f_{1}$

Problem A

For which (α, β) do we have

$$
f_{\alpha} \circ f_{\beta}=f_{\beta} \circ f_{\alpha} ?
$$

Problem B

For which (α, β) do we have

$$
f_{\alpha} \circ f_{\beta} \geq f_{\beta} \circ f_{\alpha} ?
$$

Composing floor functions: results

Problem A

For which (α, β) do we have $\quad f_{\alpha} \circ f_{\beta}=f_{\beta} \circ f_{\alpha}$?

Composing floor functions: results

Problem A

For which (α, β) do we have $\quad\lfloor\alpha\lfloor\beta x\rfloor\rfloor=\lfloor\beta\lfloor\alpha x\rfloor\rfloor$?

Composing floor functions: results

Problem A

For which (α, β) do we have $\quad\lfloor\alpha\lfloor\beta x\rfloor\rfloor=\lfloor\beta\lfloor\alpha x\rfloor\rfloor$?

Theorem (Lagarias-Murayama-R)

All solutions to (A) are:

Composing floor functions: results

Problem A

For which (α, β) do we have $\quad\lfloor\alpha\lfloor\beta x\rfloor\rfloor=\lfloor\beta\lfloor\alpha x\rfloor\rfloor$?

Theorem (Lagarias-Murayama-R)

All solutions to (A) are:

Composing floor functions: results

Problem A

For which (α, β) do we have $\quad\lfloor\alpha\lfloor\beta x\rfloor\rfloor=\lfloor\beta\lfloor\alpha x\rfloor\rfloor$?

Theorem (Lagarias-Murayama-R)

All solutions to (A) are:

Composing floor functions: results

Problem B

For which (α, β) do we have $\quad f_{\alpha} \circ f_{\beta} \geq f_{\beta} \circ f_{\alpha}$?

Composing floor functions: results

Problem B

For which (α, β) do we have $\quad\lfloor\alpha\lfloor\beta x\rfloor\rfloor \geq\lfloor\beta\lfloor\alpha x\rfloor\rfloor$?

Composing floor functions: results

Problem B

For which (α, β) do we have $\quad\lfloor\alpha\lfloor\beta x\rfloor\rfloor \geq\lfloor\beta\lfloor\alpha x\rfloor\rfloor$?

Composing floor functions: results

$\lfloor\alpha\lfloor\beta x\rfloor\rfloor \geq\lfloor\beta\lfloor\alpha x\rfloor\rfloor:$ positive-dilation results

Theorem (Lagarias-R)

All positive solutions to (B) are:β

$\lfloor\alpha\lfloor\beta x\rfloor\rfloor \geq\lfloor\beta\lfloor\alpha x\rfloor\rfloor:$ positive-dilation results

Coordinate change:
β

$\lfloor\alpha\lfloor\beta x\rfloor\rfloor \geq\lfloor\beta\lfloor\alpha x\rfloor\rfloor:$ positive-dilation results

Coordinate change:
β

$$
\mu=\frac{1}{\alpha}, \nu=\frac{\beta}{\alpha}
$$

$\lfloor\alpha\lfloor\beta x\rfloor\rfloor \geq\lfloor\beta\lfloor\alpha x\rfloor\rfloor:$ positive-dilation results

Coordinate change:
β

$$
\mu=\frac{1}{\alpha}, \nu=\frac{\beta}{\alpha}
$$

Symmetries:

$\lfloor\alpha\lfloor\beta x\rfloor\rfloor \geq\lfloor\beta\lfloor\alpha x\rfloor\rfloor:$ positive-dilation results

Coordinate change:
β

$$
\mu=\frac{1}{\alpha}, \nu=\frac{\beta}{\alpha}
$$

Symmetries:

$\lfloor\alpha\lfloor\beta x\rfloor\rfloor \geq\lfloor\beta\lfloor\alpha x\rfloor\rfloor:$ positive-dilation results

Where do green solution curves come from?

Proof ingredient: Beatty sequences

Parameter $\mu \geq 1$,

$$
\mathcal{B}(\mu)=\{\lfloor\mu\rfloor,\lfloor 2 \mu\rfloor,\lfloor 3 \mu\rfloor, \ldots\} \subset \mathbb{N}
$$

Proof ingredient: Beatty sequences

Parameter $\mu \geq 1$,

$$
\mathcal{B}(\mu)=\{\lfloor\mu\rfloor,\lfloor 2 \mu\rfloor,\lfloor 3 \mu\rfloor, \ldots\} \subset \mathbb{N}
$$

Note:

$$
\mathcal{B}(\mu)=\text { output values of } f_{\mu} \circ f_{1}(x)=\lfloor\mu\lfloor x\rfloor\rfloor
$$

Proof ingredient: Beatty sequences

Parameter $\mu \geq 1$,

$$
\mathcal{B}(\mu)=\{\lfloor\mu\rfloor,\lfloor 2 \mu\rfloor,\lfloor 3 \mu\rfloor, \ldots\} \subset \mathbb{N}
$$

Note:

$$
\mathcal{B}(\mu)=\text { output values of } f_{\mu} \circ f_{1}(x)=\lfloor\mu\lfloor x\rfloor\rfloor
$$

Example: $\varphi=\frac{1+\sqrt{5}}{2}, \quad \mathcal{B}(\varphi)=\{1,3,4,6,8,9,11,12, \ldots\}$

Proof ingredient: Beatty sequences

Parameter $\mu \geq 1$,

$$
\mathcal{B}(\mu)=\{\lfloor\mu\rfloor,\lfloor 2 \mu\rfloor,\lfloor 3 \mu\rfloor, \ldots\} \subset \mathbb{N}
$$

Note:

$$
\mathcal{B}(\mu)=\text { output values of } f_{\mu} \circ f_{1}(x)=\lfloor\mu\lfloor x\rfloor\rfloor
$$

Example: $\varphi=\frac{1+\sqrt{5}}{2}, \quad \mathcal{B}(\varphi)=\{1,3,4,6,8,9,11,12, \ldots\}$

$$
\varphi^{2}=\frac{3+\sqrt{5}}{2}, \quad \mathcal{B}\left(\varphi^{2}\right)=\{2,5,7,10,13,15,18, \ldots\}
$$

Proof ingredient: Beatty sequences

Parameter $\mu \geq 1$,

$$
\mathcal{B}(\mu)=\{\lfloor\mu\rfloor,\lfloor 2 \mu\rfloor,\lfloor 3 \mu\rfloor, \ldots\} \subset \mathbb{N}
$$

Note:

$$
\mathcal{B}(\mu)=\text { output values of } f_{\mu} \circ f_{1}(x)=\lfloor\mu\lfloor x\rfloor\rfloor
$$

Example: $\varphi=\frac{1+\sqrt{5}}{2}, \quad \mathcal{B}(\varphi)=\{1,3,4,6,8,9,11,12, \ldots\}$

$$
\varphi^{2}=\frac{3+\sqrt{5}}{2}, \quad \mathcal{B}\left(\varphi^{2}\right)=\{2,5,7,10,13,15,18, \ldots\}
$$

Theorem ("Beatty's Theorem," Ostrowski, Hyslop, Aitken, ..)
If μ and ν are irrational and satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$, then

$$
\mathcal{B}(\mu) \cap \mathcal{B}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}(\nu)=\mathbb{N}
$$

i.e. their Beatty sequences partition \mathbb{N}.

Proof ingredient: Beatty sequences

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu), \mathcal{B}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}(\nu)=\mathbb{N}
$$

iff μ and ν are irrational and satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.

Proof ingredient: Beatty sequences

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu), \mathcal{B}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}(\nu)=\mathbb{N}
$$

iff μ and ν are irrational and satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.

Proof ingredient: Beatty sequences

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu), \mathcal{B}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}(\nu)=\mathbb{N}
$$

iff μ and ν are irrational and satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.

Proposition 1 (de Bruijn 1981)

Modified* Beatty sequences $\mathcal{B}(\mu), \mathcal{B}^{<}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu)=\mathbb{N}
$$

iff μ and ν satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.

Proof ingredient: Beatty sequences

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu), \mathcal{B}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}(\nu)=\mathbb{N}
$$

iff μ and ν are irrational and satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.

Proposition 1 (de Bruijn 1981)

Modified* Beatty sequences $\mathcal{B}(\mu), \mathcal{B}^{<}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu)=\mathbb{N}
$$

iff μ and ν satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.
Idea: "break ties" between $\mu \mathbb{N}$ and $\nu \mathbb{N}$

Proof ingredient: Beatty sequences

Theorem ("Beatty's Theorem" 1926)

Beatty sequences $\mathcal{B}(\mu), \mathcal{B}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}(\nu)=\mathbb{N}
$$

iff μ and ν are irrational and satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.

Proposition 1 (de Bruijn 1981)

Modified* Beatty sequences $\mathcal{B}(\mu), \mathcal{B}^{<}(\nu)$ partition \mathbb{Z}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu)=\mathbb{Z}
$$

iff μ and ν satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.
Idea: "break ties" between $\mu \mathbb{Z}$ and $\nu \mathbb{Z}$

Proof ingredient: Beatty sequences

Proposition 1 (Lagarias-R)

Modified* Beatty sequences $\mathcal{B}(\mu), \mathcal{B}^{<}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu)=\mathbb{N}
$$

iff μ and ν satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.
Idea: "break ties" between $\mu \mathbb{N}$ and $\nu \mathbb{N}$

Proof ingredient: Beatty sequences

Proposition 1 (Lagarias-R)

Modified* Beatty sequences $\mathcal{B}(\mu), \mathcal{B}^{<}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu)=\mathbb{N}
$$

iff μ and ν satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.
Idea: "break ties" between $\mu \mathbb{N}$ and $\nu \mathbb{N}$

Proposition 2 (Lagarias-R)

For parameters $(\alpha, \beta)>0$,

$$
f_{\alpha} \circ f_{\beta} \geq f_{\beta} \circ f_{\alpha} \quad \text { iff } \quad \mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu)=\emptyset
$$

where $\mu=\frac{1}{\alpha}$ and $\nu=\frac{\beta}{\alpha}$.

Proof ingredient: Beatty sequences

Proposition 1 (Lagarias-R)

Modified* Beatty sequences $\mathcal{B}(\mu), \mathcal{B}^{<}(\nu)$ partition \mathbb{N}, i.e.

$$
\mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu)=\emptyset \quad \text { and } \quad \mathcal{B}(\mu) \cup \mathcal{B}^{<}(\nu)=\mathbb{N}
$$

iff μ and ν satsify $\frac{1}{\mu}+\frac{1}{\nu}=1$.
Idea: "break ties" between $\mu \mathbb{N}$ and $\nu \mathbb{N}$

Proposition 2 (Lagarias-R)

For parameters $(\alpha, \beta)>0$,

$$
f_{\alpha} \circ f_{\beta} \geq f_{\beta} \circ f_{\alpha} \quad \text { iff } \quad \mathcal{B}(\mu) \cap \mathcal{B}^{<}(\nu)=\emptyset
$$

where $\mu=\frac{1}{\alpha}$ and $\nu=\frac{\beta}{\alpha}$.

Proof ingredient: Beatty sequences

\rightsquigarrow Green solution curves come from Beatty sequences

Proof ingredient: Beatty sequences

\rightsquigarrow Green solution curves come from Beatty sequences

How do we know there are no more solutions?

Proof ingredient: Torus subgroups

Torus surface $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$
A point $(\sigma, \tau) \in \mathbb{T}$ generates a cyclic subgroup of \mathbb{T}

Proof ingredient: Torus subgroups

Torus surface $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$
A point $(\sigma, \tau) \in \mathbb{T}$ generates a cyclic subgroup of \mathbb{T} Example:

Proof ingredient: Torus subgroups

Torus surface $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$
A point $(\sigma, \tau) \in \mathbb{T}$ generates a cyclic subgroup of \mathbb{T} Example:

Vague Question

When is $(\sigma, \tau) \in \mathbb{T}$ a "minimal" generator for its subgroup?

Proof ingredient: Torus subgroups

Torus surface $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$
A point $(\sigma, \tau) \in \mathbb{T}$ generates a cyclic subgroup of \mathbb{T} Example:

Vague Question

When is $(\sigma, \tau) \in \mathbb{T}$ a "minimal" generator for its subgroup?

Proof ingredient: Torus subgroups

Torus surface $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$
A point $(\sigma, \tau) \in \mathbb{T}$ generates a cyclic subgroup of \mathbb{T} Def. (σ, τ) is weakly minimal if

Vague Question

When is $(\sigma, \tau) \in \mathbb{T}$ a "minimal" generator for its subgroup?

Proof ingredient: Torus subgroups

Torus surface $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$
A point $(\sigma, \tau) \in \mathbb{T}$ generates a cyclic subgroup of \mathbb{T} Def. (σ, τ) is strongly minimal if

Vague Question

When is $(\sigma, \tau) \in \mathbb{T}$ a "minimal" generator for its subgroup?

Proof ingredient: Torus subgroups

Vague Question

When is $(\sigma, \tau) \in \mathbb{T}$ a "minimal" generator for its subgroup?
(σ, τ) weakly minimal

(σ, τ) strongly minimal

Proof ingredient: Torus subgroups

Vague Question

When is $(\sigma, \tau) \in \mathbb{T}$ a "minimal" generator for its subgroup?
(σ, τ) weakly minimal
(σ, τ) strongly minimal

Proposition 3 (Lagarias-R)

If (σ, τ) is a weakly minimal generator, it is also strongly minimal.

Proof ingredient: Torus subgroups

Proposition 3 (Lagarias-R)

If (σ, τ) is a weakly minimal generator, it is also strongly minimal.
All minimal generators of cyclic subgroups, in \mathbb{T} :

Composing floor functions: Why really care?

Composing floor functions: Why really care?

(Recall: P.N.T. says $\pi(x)=\#\{$ prime $p \leq x\} \approx \frac{x}{\log x}$)
Riemann hypothesis: $\Pi(x):=\sum_{p \leq x} \log p$
R. H. $\Leftrightarrow \quad \Pi(x)=x+O\left(x^{1 / 2+\epsilon}\right)$

Composing floor functions: Why really care?

(Recall: P.N.T. says $\pi(x)=\#\{$ prime $p \leq x\} \approx \frac{x}{\log x}$)
Riemann hypothesis: $\Pi(x):=\sum_{p \leq x} \log p$

$$
\text { R. H. } \Leftrightarrow \quad \Pi(x)=x+O\left(x^{1 / 2+\epsilon}\right)
$$

Mertens function:

$$
M(x):=\sum_{n \leq x} \mu(x) \quad \text { where } \mu(x) \in\{ \pm 1,0\} \text { is the Möbius function }
$$

$$
\text { R. H. } \Leftrightarrow \quad M(x)=O\left(x^{1 / 2+\epsilon}\right)
$$

Composing floor functions: Why really care?

(Recall: P.N.T. says $\pi(x)=\#\{$ prime $p \leq x\} \approx \frac{x}{\log x}$)
Riemann hypothesis: $\Pi(x):=\sum_{p \leq x} \log p$

$$
\text { R. H. } \Leftrightarrow \quad \Pi(x)=x+O\left(x^{1 / 2+\epsilon}\right)
$$

Mertens function:

$$
M(x):=\sum_{n \leq x} \mu(x) \quad \text { where } \mu(x) \in\{ \pm 1,0\} \text { is the Möbius function }
$$

$$
\text { R. H. } \Leftrightarrow \quad M(x)=O\left(x^{1 / 2+\epsilon}\right)
$$

Jean-Paul Cardinal (2010) defined a "2-dimensional analogue" of the Mertens function

Composing floor functions: Why really care?

Let $\left\{d_{i}\right\}=\left\{n,\left\lfloor\frac{1}{2} n\right\rfloor,\left\lfloor\frac{1}{3} n\right\rfloor,\left\lfloor\frac{1}{4} n\right\rfloor, \ldots, 1\right\}$ be the "almost divisors" of n.
In Cardinal's matrix \mathcal{M}_{n}, the entry in position i, j is

$$
\mathcal{M}_{n}(i, j)=M\left(\left\lfloor\frac{1}{d_{i} d_{j}} n\right\rfloor\right)=M\left(\left\lfloor\frac{1}{d_{i}}\left\lfloor\frac{1}{d_{j}} n\right\rfloor\right\rfloor\right)=M\left(\left\lfloor\frac{1}{\left.\left.d_{j}\left\lfloor\frac{1}{d_{i}} n\right\rfloor\right\rfloor\right)}\right.\right.
$$

Theorem (Cardinal 2010)

Riemann hypothesis is equivalent to

$$
\left\|\mathcal{M}_{n}\right\|=O\left(n^{1 / 2+\epsilon}\right) \quad \text { as } \quad n \rightarrow \infty
$$

Composing floor functions: Why really care?

Let $\left\{d_{i}\right\}=\left\{n,\left\lfloor\frac{1}{2} n\right\rfloor,\left\lfloor\frac{1}{3} n\right\rfloor,\left\lfloor\frac{1}{4} n\right\rfloor, \ldots, 1\right\}$ be the "almost divisors" of n.
In Cardinal's matrix \mathcal{M}_{n}, the entry in position i, j is

$$
\mathcal{M}_{n}(i, j)=M\left(\left\lfloor\frac{1}{d_{i} d_{j}} n\right\rfloor\right)=M\left(\left\lfloor\frac{1}{d_{i}}\left\lfloor\frac{1}{d_{j}} n\right\rfloor\right\rfloor\right)=M\left(\left\lfloor\frac{1}{\left.\left.d_{j}\left\lfloor\frac{1}{d_{i}} n\right\rfloor\right\rfloor\right)}\right.\right.
$$

Theorem (Cardinal 2010)

Riemann hypothesis is equivalent to

$$
\left\|\mathcal{M}_{n}\right\|=O\left(n^{1 / 2+\epsilon}\right) \quad \text { as } \quad n \rightarrow \infty
$$

Computational evidence suggests that $\left\|\mathcal{M}_{n}\right\|$ is better behaved than Mertens function $M(n)$ as $n \rightarrow \infty \ldots$

Composing floor functions: Why really care?

Let $\left\{d_{i}\right\}=\left\{n,\left\lfloor\frac{1}{2} n\right\rfloor,\left\lfloor\frac{1}{3} n\right\rfloor,\left\lfloor\frac{1}{4} n\right\rfloor, \ldots, 1\right\}$ be the "almost divisors" of n.
In Cardinal's matrix \mathcal{M}_{n}, the entry in position i, j is

$$
\mathcal{M}_{n}(i, j)=M\left(\left\lfloor\frac{1}{d_{i} d_{j}} n\right\rfloor\right)=M\left(\left\lfloor\frac{1}{d_{i}}\left\lfloor\frac{1}{d_{j}} n\right\rfloor\right\rfloor\right)=M\left(\left\lfloor\frac{1}{\left.\left.d_{j}\left\lfloor\frac{1}{d_{i}} n\right\rfloor\right\rfloor\right)}\right.\right.
$$

(Note: "almost divisors of almost divisors are almost divisors"!)

Theorem (Cardinal 2010)

Riemann hypothesis is equivalent to

$$
\left\|\mathcal{M}_{n}\right\|=O\left(n^{1 / 2+\epsilon}\right) \quad \text { as } \quad n \rightarrow \infty
$$

Computational evidence suggests that $\left\|\mathcal{M}_{n}\right\|$ is better behaved than Mertens function $M(n)$ as $n \rightarrow \infty \ldots$

References

固 S. Beatty (1926)
Problem 3173
Amer. Math. Monthly 33(3) 159.
B J.-P. Cardinal (2010)
Symmetric matrices related to the Mertens function
Lin. Alg. Appl. 432(1), 161-172.
圊 N. G. de Bruijn (1981)
Sequences of zeros and ones generated by special production rules
Indagationes Math. 43(1), 27-37.
© J. C. Lagarias, T. Murayama, D. H. Richman (2016)
Dilated floor functions that commute
Amer. Math. Monthly 163(10), arXiv:1611.05513.
R J. C. Lagarias and D. H. Richman (2019)
Dilated floor functions with nonnegative commutator I
Acta Arith. 187(3), arXiv: 1806.00579.
Pi J. C. Lagarias and D. H. Richman (2019)
Dilated floor functions with nonnegative commutator II submitted, arXiv:1907.09641.

Dilated floor function commutators

