Descartes' Rule of Signs and Beyond

Harry Richman
University of Michigan

September 21, 2017

René Descartes

- 1596-1650
- French philosopher, scientist, mathematician

DISCOURSE ON METHOD, OPTICS, GEOMETRY, and METEOROLOGY

René Descartes

Translated, with an Introduction, by Paul J. Olscamp Assistant Professor of Pbilosophy, The Obio State University

René Descartes

- 1596-1650
- French philosopher, scientist, mathematician

DISCOURSE ON METHOD, OPTICS, GEOMETRY, and METEOROLOGY

332

Eighth Discourse
Of the Rainbow
The rainbow is such a remarkable phenomenon of nature, and its cause has been so meticulously sought after by inquiring minds throughout the ages, that I could not choose a more appropriate subject for demonstrating how, with the method I am using, we can arrive at knowledge not posicsed at all by those whose writings are available to us. First, 1 considered that this are can appear not only in the sky, but also in the air near us, whenever there are many drops of water in the air illuminated by the sun, as experience shows us in certain fountains; thus it was easy for me to judge that it came merely from the way that the rays of light act against thove drops, and from there tend toward our cyes. Then, knowing

Harry Richman

René Descartes

- 1596-1650
- French philosopher, scientist, mathematician
- studied polynomials:

234
if we have

$$
x^{6}+n x^{5}-6 n^{2} x^{4}+36 n^{3} x^{3}-216 n^{4} x^{2}+1296 n^{5} x-7776 n^{6}=0
$$

by making $y-6 n=x$, we will have

From this it is manifest that $504 n^{2}$, which is the known quantity of the third term, is greater than the square of $\frac{35 n}{2}$, which is half that of the second term. And there is no case where the quantity by which we increase the true roots need be, for this effect, larger in proportion to those given, than for this one here.

But if the last term is zero, and we do not desire that it be so, we must again augment by a little bit the value of the roots, but not by so little that it is not sufficient for this effect. Similarly, if we want to raise the number of dimensions of some equation, and insure that all the places of its terms be filled-if, for example, instead of $x^{5}-b=0$, we wish to have an equation in which none of the terms are zero-we must first, for $x^{5}-b=0$, write $x^{6}-b x=0$; then, having made $y-a=x$, we
will have

René Descartes

- 1596-1650
- French philosopher, scientist, mathematician
- studied polynomials:
(1) Which numbers x
satisfy $f(x)=0$?
(2) How many numbers x satisfy $f(x)=0$?

234
if we have

$$
x^{6}+n x^{5}-6 n^{2} x^{4}+36 n^{3} x^{3}-216 n^{4} x^{2}+1296 n^{5} x-7776 n^{6}=0
$$

by making $y-6 n=x$, we will have

From this it is manifest that $504 n^{2}$, which is the known quantity of the third term, is greater than the square of $\frac{35 n}{2}$, which is half that of the second term. And there is no case where the quantity by which we increase the true roots need be, for this effect, larger in proportion to those given, than for this one here.

But if the last term is zero, and we do not desire that it be so, we must again augment by a little bit the value of the roots, but not by so little that it is not sufficient for this effect. Similarly, if we want to raise the number of dimensions of some equation, and insure that all the places of its terms be filled-if, for example, instead of $x^{5}-b=0$, we wish to have an equation in which none of the terms are zero-we must first, for $x^{5}-b=0$, write $x^{6}-b x=0$; then, having made $y-a=x$, we
will have

René Descartes

- studied polynomials:
$f(x)=x^{3}-6 x^{2}+13 x-10$
(1) Which numbers x
satisfy $f(x)=0$?
(2) How many numbers
x satisfy $f(x)=0$?

236

GEOMETRY

in the equation, namely b^{2}, is replaced by $3 a^{2}$, we must assume

$$
y=x \sqrt{\frac{3 a^{2}}{b^{2}}}
$$

and then write

$$
y^{3}-3 a^{2} y+\frac{3 a^{3} c^{3}}{b^{3}} \sqrt{3}=0
$$

For the rest [note that] the true roots, as well as the negative ones, are not always real, but sometimes only imaginary; that is, while we can always conceive as many roots for each equation as I have stated, still there is sometimes no quantity corresponding to those we conceive. Thus, although we can conceive three roots in the equation

$$
x^{3}-6 x^{2}+13 x-10=0
$$

there is nevertheless only one real root, 2 , and no matter how we may augment, diminish, or multiply the other two, in the way just explained, they will still be imaginary.
Now, when in order to find the construction of some problem, we come to an equation in which the unknown quantity

René Descartes

- studied polynomials:
$f(x)=x^{3}-6 x^{2}+13 x-10$
(1) Which real numbers x satisfy $f(x)=0$?
(2) How many real numbers x satisfy $f(x)=0$?

236

GEOMETRY

in the equation, namely b^{2}, is replaced by $3 a^{2}$, we must assume

$$
y=x \sqrt{\frac{3 a^{2}}{b^{2}}}
$$

and then write

$$
y^{3}-3 a^{2} y+\frac{3 a^{3} c^{3}}{b^{3}} \sqrt{3}=0
$$

For the rest [note that] the true roots, as well as the negative ones, are not always real, but sometimes only imaginary; that is, while we can always conceive as many roots for each equation as I have stated, still there is sometimes no quantity corresponding to those we conceive. Thus, although we can conceive three roots in the equation

$$
x^{3}-6 x^{2}+13 x-10=0
$$

there is nevertheless only one real root, 2 , and no matter how we may augment, diminish, or multiply the other two, in the way just explained, they will still be imaginary.
Now, when in order to find the construction of some problem, we come to an equation in which the unknown quantity

René Descartes

- studied polynomials:
$f(x)=x^{3}-6 x^{2}+13 x-10$
(1) Which positive real
numbers x satisfy
$f(x)=0$?
(2) How many positive real numbers x satisfy $f(x)=0$?

236

GEOMETRY

in the equation, namely b^{2}, is replaced by $3 a^{2}$, we must assume

$$
y=x \sqrt{\frac{3 a^{2}}{b^{2}}}
$$

and then write

$$
y^{3}-3 a^{2} y+\frac{3 a^{3} c^{3}}{b^{3}} \sqrt{3}=0
$$

For the rest [note that] the true roots, as well as the negative ones, are not always real, but sometimes only imaginary; that 1s, whute we can aiways conceive as many roots ior eacn equation as I have stated, still there is sometimes no quantity corresponding to those we conceive. Thus, although we can conceive three roots in the equation

$$
x^{3}-6 x^{2}+13 x-10=0
$$

there is nevertheless only one real root, 2 , and no matter how we may augment, diminish, or multiply the other two, in the way just explained, they will still be imaginary.
Now, when in order to find the construction of some problem, we come to an equation in which the unknown quantity

Polynomials: example

$$
f(x)=x^{2}-8 x+2
$$

- Which $x>0$ satisfy $f(x)=0$?
- How many $x>0$ satisfy $f(x)=0$?

Polynomials: example

$$
f(x)=x^{2}-8 x+2 \quad(\text { degree }=2)
$$

- Which $x>0$ satisfy $f(x)=0$?

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- How many $x>0$ satisfy $f(x)=0$? evaluate formula \uparrow

Polynomials: example

$$
f(x)=x^{10}+7 x^{2}-8 x+2 \quad(\text { degree }=10)
$$

- Which $x>0$ satisfy $f(x)=0$?
- How many $x>0$ satisfy $f(x)=0$?

Polynomials: example

$$
f(x)=x^{10}+7 x^{2}-8 x+2 \quad(\text { degree }=10)
$$

- Which $x>0$ satisfy $f(x)=0$? HARD!
- How many $x>0$ satisfy $f(x)=0$? Easier? (less than $10 \ldots$)

Polynomials: example

$$
f(x)=x^{10}+7 x^{2}-8 x+2 \quad(\text { degree }=10)
$$

- Which $x>0$ satisfy $f(x)=0$? HARD!
- How many $x>0$ satisfy $f(x)=0$? Easier? (less than $10 \ldots$)

Polynomials: example

$$
f(x)=x^{10}+7 x^{2}+8 x+2 \quad(\text { degree }=10)
$$

- Which $x>0$ satisfy $f(x)=0$? HARD!
- How many $x>0$ satisfy $f(x)=0$? Easier? (less than 10...)

A clever shortcut!

- How many x satisfy $f(x)=0$?

We can also know from this how many true and how many negative roots there can be in each equation, namely, there can be as many true roots as the number of times the plus and minus signs change; and as many negative roots as the number of times there are two plus or two minus signs in succession. Thus, in the last equation, since $+x^{4}$ is followed by $-4 x^{3}$, which is a change from the plus sign to the minus, and $-19 x^{2}$ is followed by $+106 x$, and $+106 x$ by -120 , which are two more changes. we know that there ame then. .i. .

A clever shortcut!

- How many x satisfy $f(x)=0$?

We can also know from this how many true and how many negative roots there can be in each equation, namely, there can be as many true roots as the number of times the plus and minus signs change; and as many negative roots as the number of times there are two plus or two minus signs in succession. Thus, in the last equation, since $+x^{4}$ is followed by $-4 x^{3}$, which is a change from the plus sign to the minus, and $-19 x^{3}$ is followed by $+106 x$, and $+106 x$ by -120 , which are two more changes. we know that there are thent. which are thorause

Theorem (Descartes' rule of signs)

For a polynomial with real coefficients,
$\#($ positive real roots $) \leq \#($ sign changes of coefficients $)$.

A clever shortcut: example

Theorem (Descartes' rule of signs)

For a polynomial with real coefficients,
$\#($ positive real roots $) \leq \#($ sign changes of coefficients $)$.

$$
f(x)=+x^{10}+7 x^{2}-8 x+2 \quad(\text { degree }=10)
$$

A clever shortcut: example

Theorem (Descartes' rule of signs)

For a polynomial with real coefficients,
$\#($ positive real roots $) \leq \#($ sign changes of coefficients $)$.

$$
f(x)=+x^{10}+7 x^{2}-8 x+2 \quad \quad(\text { degree }=10)
$$

A clever shortcut: example

Theorem (Descartes' rule of signs)

For a polynomial with real coefficients,
$\#($ positive real roots $) \leq \#($ sign changes of coefficients $)$.

$$
\begin{gathered}
f(x)=+x^{10}+7 x^{2}-8 x+2 \\
\overrightarrow{0} \\
\overrightarrow{1}
\end{gathered} \quad(\text { degree }=10)
$$

2 sign changes $\Rightarrow \leq 2$ real pos. roots

A clever shortcut: example

Theorem (Descartes' rule of signs)

For a polynomial with real coefficients,
$\#($ positive real roots $) \leq \#($ sign changes of coefficients $)$.

$$
\begin{gathered}
f(x)=+x^{10}+7 x^{2}-8 x+2 \quad \quad(\text { degree }=10) \\
\overrightarrow{0} \quad \overrightarrow{1} \quad \overrightarrow{1}
\end{gathered}
$$

2 sign changes $\Rightarrow \leq 2$ real pos. roots
Challenge
Prove this for $f(x)=a x^{2} \pm b x \pm c$.

Why guess this?

Theorem (Descartes' rule of signs)

For a polynomial with real coefficients,
$\#($ positive real roots $) \leq \#($ sign changes of coefficients $)$.

Why guess this?

Theorem (Descartes' fule guess of signs)

For a polynomial with real coefficients,
$\#($ positive real roots $) \approx \#($ sign changes of coefficients $)$.

Why guess this?

Theorem (Descartes' rule guess of signs)

For a polynomial with real coefficients,
$\#($ positive real roots $) \approx \#($ sign changes of coefficients $)$.

- $f(x)=0$ means graph changes $(+-)$ or $(-+)$

Why guess this? a "'fake" "proof"'

- plot points $f(x)=1+7 x-8 x^{2}+2 x^{3}$

Why guess this? a "'fake" "proof"'

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Why guess this? a "'fake" "proof"'

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Why guess this? a "'fake" "proof"'

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Why guess this? a "'fake" "proof"'

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Why guess this? a "'fake" "proof"'

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

- count roots!

Why guess this? a "'fake" "proof"'

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

- count roots! (????)

Is this justified???

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Is this justified???

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

- when $x=0, \quad f(0)=1+0+0+0=1>0$

Is this justified???

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

- when

$$
x=N \gg 0, \quad f(N)=1+7 N-8 N^{2}+2 N^{3} \approx 2 N^{3}>0
$$

Is this justified???

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

- when $x=$??, $\quad f(x=? ?) \approx 7 x^{1}>0$

Is this justified???

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

- when $x=? ?, \quad f(x=? ?) \approx-8 x^{2}<0$

Is this justified???

- plot points $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

When is this guess wrong?

- plot points $f(x)=1+7 x-8 x^{2}+2 x^{3}$

When is this guess wrong?

- plot points $f(x)=1+1 x^{1}-1 x^{2}+2 x^{3}$

When is this guess wrong?

- plot points $f(x)=1+1 x^{1}-1 x^{2}+2 x^{3}$

When is this guess wrong?

- plot points $f(x)=1+1 x^{1}-1 x^{2}+2 x^{3}$

When is this guess wrong?

- $f(x)=1+7 x-8 x^{2}+2 x^{3} \rightarrow$ yes
- $f(x)=1+1 x-1 x^{2}+2 x^{3} \rightarrow$ no

When is this guess wrong?

$$
\begin{aligned}
& \text { - } f(x)=1+7 x-8 x^{2}+2 x^{3} \rightarrow \text { yes } \\
& \text { - } f(x)=1+1 x-1 x^{2}+2 x^{3} \rightarrow \text { no }
\end{aligned}
$$

Source: REI.com

Concavity

- $f(x)=1+7 x-8 x^{2}+2 x^{3} \rightarrow$ yes
- $f(x)=1+1 x-1 x^{2}+2 x^{3} \rightarrow$ no

Concavity

$$
\begin{aligned}
& \text { - } f(x)=1+7 x-8 x^{2}+2 x^{3} \rightarrow \text { yes } \\
& \text { - } f(x)=1+1 x-1 x^{2}+2 x^{3} \rightarrow \text { no }
\end{aligned}
$$

\Rightarrow yes

\Rightarrow no

Why concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$

Why concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$

Why concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$

- $f(x) \approx a_{0}-a_{1} x \quad \Rightarrow \quad x \approx \frac{a_{0}}{a_{1}}$

Why concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$

- $f(x) \approx-a_{1} x+a_{2} x^{2} \quad \Rightarrow \quad x \approx \frac{a_{1}}{a_{2}}$

Why concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$

- $f(x) \approx a_{2} x^{2}-a_{3} x^{3} \quad \Rightarrow \quad x \approx \frac{a_{2}}{a_{3}}$

Why concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$

- $f(x) \approx-a_{3} x^{3}+a_{4} x^{4} \quad \Rightarrow \quad x \approx \frac{a_{3}}{a_{4}}$

Why concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$

- Order matters!

Why log-concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$
- Order matters!

$$
\frac{a_{0}}{a_{1}} \leq \frac{a_{1}}{a_{2}} \leq \frac{a_{2}}{a_{3}} \leq \frac{a_{3}}{a_{4}}
$$

Why log-concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$
- Order matters!

$$
\begin{array}{ll}
& \frac{a_{0}}{a_{1}} \leq \frac{a_{1}}{a_{2}} \leq \frac{a_{2}}{a_{3}} \leq \frac{a_{3}}{a_{4}} \\
\Leftrightarrow & a_{i-1} a_{i+1} \leq a_{i}^{2}
\end{array}
$$

Why log-concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$
- Order matters!

$$
\begin{aligned}
& \quad \frac{a_{0}}{a_{1}} \leq \frac{a_{1}}{a_{2}} \leq \frac{a_{2}}{a_{3}} \leq \frac{a_{3}}{a_{4}} \\
& \Leftrightarrow \quad a_{i-1} a_{i+1} \leq a_{i}^{2} \\
& \Leftrightarrow \quad \log a_{i-1}+\log a_{i+1} \leq 2 \log a_{i}
\end{aligned}
$$

Why log-concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$
- Order matters!

$$
\begin{aligned}
& \quad \frac{a_{0}}{a_{1}} \leq \frac{a_{1}}{a_{2}} \leq \frac{a_{2}}{a_{3}} \leq \frac{a_{3}}{a_{4}} \\
& \Leftrightarrow \quad a_{i-1} a_{i+1} \leq a_{i}^{2} \\
& \Leftrightarrow \quad \log a_{i-1}+\log a_{i+1} \leq 2 \log a_{i}
\end{aligned}
$$

- A sequence $\left\{a_{i}\right\}$ is log-concave if this holds

Why log-concavity?

- $f(x)=a_{0}-a_{1} x+a_{2} x^{2}-a_{3} x^{3}+a_{4} x^{4}$
- Order matters!

$$
\begin{gathered}
\frac{a_{0}}{a_{1}} \leq \frac{a_{1}}{a_{2}} \leq \frac{a_{2}}{a_{3}} \leq \frac{a_{3}}{a_{4}} \\
\Leftrightarrow \quad a_{i-1} a_{i+1} \leq a_{i}^{2} \\
\Leftrightarrow \quad \log a_{i-1}+\log a_{i+1} \leq 2 \log a_{i} \quad \text { (concave) }
\end{gathered}
$$

- A sequence $\left\{a_{i}\right\}$ is log-concave if this holds

log-Concavity

Theorem (Newton, via Stanley)

If

$$
f(x)=a_{0}-a_{1} x+a_{2} x^{2}-\cdots \pm a_{n} x^{n} \quad\left(a_{i}>0\right)
$$

has all real roots, then the sequence

$$
a_{0} /\binom{n}{0}, a_{1} /\binom{n}{1}, \ldots, a_{n} /\binom{n}{n}
$$

is log concave.

log-Concavity

Theorem (Newton, via Stanley)

If

$$
f(x)=a_{0}-a_{1} x+a_{2} x^{2}-\cdots \pm a_{n} x^{n} \quad\left(a_{i}>0\right)
$$

has all real roots, then the sequence

$$
a_{0} /\binom{n}{0}, a_{1} /\binom{n}{1}, \ldots, a_{n} /\binom{n}{n}
$$

is log concave.

- Equivalently, for all i

$$
a_{i}^{2} \geq a_{i-1} a_{i+1} \cdot \frac{\binom{n}{i}^{2}}{\binom{n}{i-1}\binom{n}{i+1}}
$$

log-Concavity

Theorem (Newton, via Stanley)

If

$$
f(x)=a_{0}-a_{1} x+a_{2} x^{2}-\cdots \pm a_{n} x^{n} \quad\left(a_{i}>0\right)
$$

has all real roots, then the sequence

$$
a_{0} /\binom{n}{0}, a_{1} /\binom{n}{1}, \ldots, a_{n} /\binom{n}{n}
$$

is log concave.

- Equivalently, for all i

$$
a_{i}^{2} \geq a_{i-1} a_{i+1} \cdot\left(1+\frac{1}{i}\right)\left(1+\frac{1}{n-i}\right)
$$

log-Concavity

Theorem (Newton, via Stanley)

If

$$
f(x)=a_{0}-a_{1} x+a_{2} x^{2}-\cdots \pm a_{n} x^{n} \quad\left(a_{i}>0\right)
$$

has all real roots, then the sequence

$$
a_{0} /\binom{n}{0}, a_{1} /\binom{n}{1}, \ldots, a_{n} /\binom{n}{n}
$$

is log concave.

- Equivalently, for all i

$$
a_{i}^{2} \geq a_{i-1} a_{i+1} \cdot\left(1+\frac{1}{i}\right)\left(1+\frac{1}{n-i}\right)
$$

- Challenge: prove this!

log-Concavity

Heuristic (Descartes)
For a polynomial with real coefficients,
$\#$ (positive real roots) $\approx \#($ sign changes of coefficients $)$.

log-Concavity

Heuristic (Descartes)

For a polynomial with real coefficients,
$\#$ (positive real roots) $\approx \#$ (sign changes of coefficients).

- need log-concavity of coefficients (cf. Newton's theorem)

log-Concavity

Heuristic (Descartes)

For a polynomial with real coefficients,
$\#$ (positive real roots) $\approx \#$ (sign changes of coefficients).

- need log-concavity of coefficients (cf. Newton's theorem) Issues:
- Newton's condition is necessary, NOT sufficient

log-Concavity

Heuristic (Descartes)

For a polynomial with real coefficients,

$$
\#(\text { positive real roots }) \approx \#(\text { sign changes of coefficients })
$$

- need log-concavity of coefficients (cf. Newton's theorem)

Issues:

- Newton's condition is necessary, NOT sufficient
- what if not ALL sign changes occur?

log-Concavity

Heuristic (Descartes)

For a polynomial with real coefficients,

$$
\#(\text { positive real roots }) \approx \#(\text { sign changes of coefficients })
$$

- need log-concavity of coefficients (cf. Newton's theorem)

Issues:

- Newton's condition is necessary, NOT sufficient
- what if not ALL sign changes occur?

Problem

What condition on coefficients is sufficient to guarantee c

Issues

Problem

What condition on coefficients is sufficient to guarantee $\#($ positive real roots $)=\#($ sign changes of coefficients $) ?$

- Can one term ALWAYS dominate?
- $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Issues

Problem

What condition on coefficients is sufficient to guarantee $\#($ positive real roots $)=\#($ sign changes of coefficients $) ?$

- Can one term ALWAYS dominate?
- $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Issues

Problem

What condition on coefficients is sufficient to guarantee $\#($ positive real roots $)=\#($ sign changes of coefficients $) ?$

- Can one term ALWAYS dominate?
- $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Issues

Problem

What condition on coefficients is sufficient to guarantee $\#($ positive real roots $)=\#($ sign changes of coefficients $) ?$

- Can one term ALWAYS dominate?
- $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Issues

Problem

What condition on coefficients is sufficient to guarantee $\#($ positive real roots $)=\#($ sign changes of coefficients $) ?$

- Can one term ALWAYS dominate?
- $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$

Issues

Problem

What condition on coefficients is sufficient to guarantee $\#($ positive real roots $)=\#($ sign changes of coefficients $) ?$

- Can one term ALWAYS dominate?
- $f(x)=1 x^{0}+7 x^{1}-8 x^{2}+2 x^{3}$
\Rightarrow "non-Archimedean" or "ultrametric" fields

Non-Archimedean fields: motivation

Problem
 How big is $a+b$ compared to a, b ?

Non-Archimedean fields: motivation

Problem

How big is $a+b$ compared to a, b ?
Usual world:

- $($ big $)+($ big $) \leq 2 \cdot($ big $), \quad($ small $)+($ small $) \leq 2 \cdot($ small $)$
- $(\mathrm{big})+($ small $)=$ slightly bigger or smaller

Non-Archimedean fields: motivation

Problem

How big is $a+b$ compared to a, b ?
Usual world:

- $($ big $)+(b i g) \leq 2 \cdot(b i g), \quad($ small $)+($ small $) \leq 2 \cdot($ small $)$
- $(\mathrm{big})+($ small $)=$ slightly bigger or smaller BUT if difference is very large,
- $(\mathrm{big})+(\mathrm{small}) \approx(\mathrm{big})$

Non-Archimedean fields: motivation

Problem

How big is $a+b$ compared to a, b ?
Usual world:

- $($ big $)+(b i g) \leq 2 \cdot(b i g), \quad($ small $)+($ small $) \leq 2 \cdot($ small $)$
- $(\mathrm{big})+($ small $)=$ slightly bigger or smaller BUT if difference is very large,
- $(\mathrm{big})+(\mathrm{small}) \approx(\mathrm{big})$
non-Archimedean world:
- $(\mathrm{big})+(\mathrm{big}) \leq(\mathrm{big}), \quad($ small $)+($ small $) \leq($ small $)$
- $($ big $)+($ small $)=($ big $)$

Non-Archimedean fields: motivation

Problem

How big is $a+b$ compared to a, b ?
Usual world:

- $($ big $)+(b i g) \leq 2 \cdot(b i g), \quad($ small $)+($ small $) \leq 2 \cdot($ small $)$
- $(\mathrm{big})+($ small $)=$ slightly bigger or smaller BUT if difference is very large,
- $(\mathrm{big})+(\mathrm{small}) \approx(\mathrm{big})$
non-Archimedean world:
- $(\mathrm{big})+(\mathrm{big}) \leq(\mathrm{big}), \quad($ small $)+($ small $) \leq($ small $)$
- $($ big $)+($ small $)=($ big $)$
i.e. ALL differences are very large

Non-Archimedean fields

- field K with valuation val : $K^{\times} \rightarrow \mathbb{R}$

Idea: val measures how "big" a number is, acts like $z \rightarrow \log |z|$ on real (or complex) numbers (but better)

Non-Archimedean fields

- field K with valuation val : $K^{\times} \rightarrow \mathbb{R}$

Idea: val measures how "big" a number is, acts like $z \rightarrow \log |z|$ on real (or complex) numbers (but better)

- Rules:
(1) $\operatorname{val}(a b)=\operatorname{val}(a)+\operatorname{val}(b)$
(2) if $\operatorname{val}(a) \neq \operatorname{val}(b)$,

$$
\operatorname{val}(a+b)=\max \{\operatorname{val}(a), \operatorname{val}(b)\}
$$

Non-Archimedean fields

- field K with valuation val : $K^{\times} \rightarrow \mathbb{R}$

Idea: val measures how "big" a number is, acts like $z \rightarrow \log |z|$ on real (or complex) numbers (but better)

- Rules:
(1) $\operatorname{val}(a b)=\operatorname{val}(a)+\operatorname{val}(b)$
(2) if $\operatorname{val}(a) \neq \operatorname{val}(b)$,

$$
\operatorname{val}(a+b)=\max \{\operatorname{val}(a), \operatorname{val}(b)\}
$$

(3) In general,

$$
\operatorname{val}(a+b) \leq \max \{\operatorname{val}(a), \operatorname{val}(b)\}
$$

(9) (also: val $(0)=-\infty)$

Non-Archimedean fields

- field K with valuation val : $K^{\times} \rightarrow \mathbb{R}$

Idea: val measures how "big" a number is, acts like $z \rightarrow \log |z|$ on real (or complex) numbers (but better)

- Examples:

Non-Archimedean fields

- field K with valuation val : $K^{\times} \rightarrow \mathbb{R}$

Idea: val measures how "big" a number is, acts like $z \rightarrow \log |z|$ on real (or complex) numbers (but better)

- Examples:
- rational power series

$$
\begin{aligned}
& K=\mathbb{R}(\epsilon)=\left\{a_{n} \epsilon^{n}+a_{n+1} \epsilon^{n+1}+\cdots\right\}, \\
& \text { val }: \epsilon^{n} \mapsto-n, \quad \mathbb{R}^{\times} \mapsto 0
\end{aligned}
$$

Non-Archimedean fields

- field K with valuation val : $K^{\times} \rightarrow \mathbb{R}$

Idea: val measures how "big" a number is, acts like $z \rightarrow \log |z|$ on real (or complex) numbers (but better)

- Examples:
- rational power series

$$
\begin{aligned}
& K=\mathbb{R}(\epsilon)=\left\{a_{n} \epsilon^{n}+a_{n+1} \epsilon^{n+1}+\cdots\right\}, \\
& \text { val }: \epsilon^{n} \mapsto-n, \quad \mathbb{R}^{\times} \mapsto 0
\end{aligned}
$$

- p-adic numbers

$$
\begin{aligned}
& K=\mathbb{Q} \\
& \text { val : } p^{n} \mapsto-n, \quad r \mapsto 0
\end{aligned}
$$

Newton polygon

Given polynomial with coefficients in $K=\mathbb{R}(\epsilon)$, e.g.

$$
f(x)=(1+2 \epsilon)+\epsilon^{-7} x+\left(\epsilon^{-8}+3 \epsilon^{-1}+1+\epsilon^{5}\right) x^{2}+\epsilon^{-2} x^{3},
$$

the Newton polygon is the lower-convex hull of the graph val $\left(a_{n}\right)$:

- using Newton polygon leads to better* rule of signs!

Newton polygon

Given polynomial with coefficients in $K=\mathbb{R}(\epsilon)$, e.g.

$$
f(x)=(1+2 \epsilon)+\left(1+\epsilon^{3}\right) x+\left(3+\epsilon^{5}\right) x^{2}+\epsilon^{-2} x^{3}
$$

the Newton polygon is the lower-convex hull of the graph val $\left(a_{n}\right)$:

- using Newton polygon leads to better* rule of signs!

Newton polygon + Descartes' rule

- $K=\mathbb{R}\left(\epsilon, \epsilon^{1 / 2}, \epsilon^{1 / 3}, \ldots\right)$ rational power series* in ϵ
- a number is "positive" if its leading term is positive

Theorem (non-Archimedean Descartes' rule)

For $f(x) \in K[x]$, suppose that Newton polygon has "corners" at all points on boundary. Then
$\#($ positive real roots $)=\#($ sign changes of Newton poly. $)$.
*really, need to take "completion" w.r.t. valuation

Newton polygon + Descartes' rule

- Example 1:

$$
f(x)=+(1+2 \epsilon)-\left(7-\epsilon^{4}\right) x+\left(3+\epsilon^{5}\right) x^{2}-\left(\epsilon^{-2}+1\right) x^{3}
$$

Newton polygon + Descartes' rule

- Example 1:

$$
f(x)=+(1+2 \epsilon)-\left(7-\epsilon^{4}\right) x+\left(3+\epsilon^{5}\right) x^{2}-\left(\epsilon^{-2}+1\right) x^{3}
$$

1 sign change $\Rightarrow 1$ pos. real root

Newton polygon + Descartes' rule

- Example 1:

$$
f(x)=+(1+2 \epsilon)+\left(7-\epsilon^{4}\right) x+\left(3+\epsilon^{5}\right) x^{2}-\left(\epsilon^{-2}+1\right) x^{3}
$$

1 sign change $\Rightarrow 1$ pos. real root

Newton polygon + Descartes' rule

- Example 1:

$$
f(x)=+(1+2 \epsilon)-\left(7-\epsilon^{4}\right) x+\left(3+\epsilon^{5}\right) x^{2}+\left(\epsilon^{-2}+1\right) x^{3}
$$

0 sign changes $\Rightarrow 0$ pos. real roots

Newton polygon + Descartes' rule

- Example 2:

$$
f(x)=+(1+2 \epsilon)-\epsilon^{-4} x+\left(\epsilon^{-8}+3 \epsilon^{-1}+\epsilon^{5}\right) x^{2}-\left(\epsilon^{-2}+1\right) x^{3}
$$

Newton polygon + Descartes' rule

- Example 2:

$$
f(x)=+(1+2 \epsilon)-\epsilon^{-4} x+\left(\epsilon^{-8}+3 \epsilon^{-1}+\epsilon^{5}\right) x^{2}-\left(\epsilon^{-2}+1\right) x^{3}
$$

3 sign changes $\Rightarrow \leq 3$ pos. real roots (usual Descartes' rule)

Newton polygon + Descartes' rule

- Example 3:

$$
f(x)=+(1+2 \epsilon)-\epsilon^{-7} x+\left(\epsilon^{-8}+3 \epsilon^{-1}+\epsilon^{5}\right) x^{2}-\left(\epsilon^{-2}+1\right) x^{3}
$$

Newton polygon + Descartes' rule

- Example 3:

$$
f(x)=+(1+2 \epsilon)-\epsilon^{-7} x+\left(\epsilon^{-8}+3 \epsilon^{-1}+\epsilon^{5}\right) x^{2}-\left(\epsilon^{-2}+1\right) x^{3}
$$

3 sign changes $\Rightarrow 3$ pos. real roots

References

René Descartes (translated by Paul Olscamp) (1965)
Discourse on Method, Optics, Geometry, and Meteorology
Bobbs-Merill, Indianapolis.Richard Stanley (1989)
Log-concave and unimodal sequences in algebra, combinatorics, and geometry
Ann. New York Acad. Sci., 576, pp. 500-534.

Rule of signs
What makes it work？ Beyond Descartes＇rule

Beyond Descartes＇rule

Eighth Discourse
 Of the Rainbow

The rainbow is such a remarkable phenomenon of nature， and its cause has been so meticulously sought after by in． quiring minds throughout the ages，that 1 could not choov a more appropriate subject for demonstrating how，with the method I am using，we can arrive at knowledge not posiesed at all by those whose writings are available to us．First，I con－ sidered that this arc can appear not only in the sky，but also in the air near us，whenever there are many drops of water in the air illuminated by the sun，as experience shows us in certain fountains；thus it was easy for me to judge that it came merely from the way that the rays of light act against those drops，and from there tend toward our cyes．Then，knowing that these drops are round，as has been proven above，and seeing that their being larger or smaller does not change the

EIGHTH DISCOURSE
EIGHTH DISC the angle slightly smaller， color disappeared．And if I made the angie suigher once，but rather it first the color did not disappe

divided into less brilliant parts，in which one saw yellow， blue，and int two less brem，Theno looking at the part of this blue，and other colors．Then，also looking if I made the angle ball which is marked K, I perceived that if I made the angie

Thank you！

