Tropical weights of Weierstrass points

Omid Amini, Lucas Gierczak Ecole Polytechnique, Harry Richman University of Washington

Motivation: Weierstrass points on algebraic curves

Weierstrass points are a tool for better understanding algebraic curves.

• If X is a smooth, projective, genus g curve, $x \in X$ is a Weierstrass point if $K \sim gx + E \qquad \text{for some effective divisor } E$ where K denotes the canonical divisor.

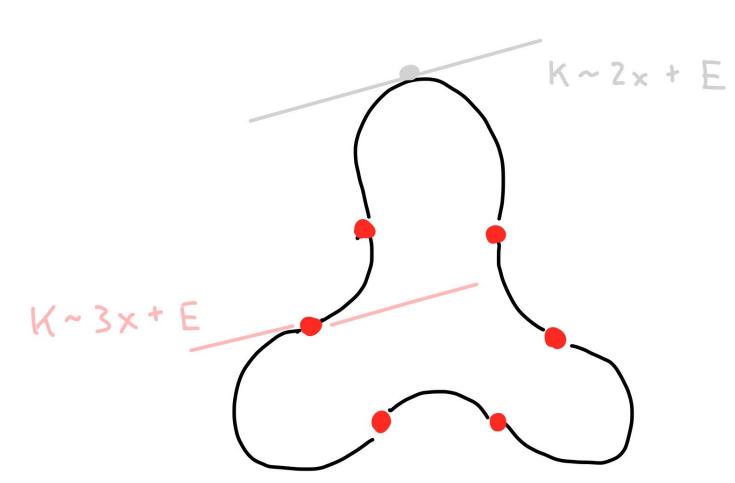


Figure 1. Weierstrass points on a genus 3 algebraic curve.

- Geometric view: the curve X has a canonical map to projective space $\mathbb{P}^{(g-1)}$. Weierstrass points are the inflection points of the canonical embedding.
- The weight of a Weierstrass point is the degree of vanishing of the Wronskian; it records collisions of Weierstrass points on "generic nearby" curves.

Theorem (Hurwitz, 1893)

If X is a smooth, projective algebraic curve of genus $g \geq 2$, then the total weight of Weierstrass points of X is g^3-g .

Motivating Problems

- 1. Suppose X is a stable nodal curve of genus $g \geq 2$. How many (limit) Weierstrass points does X have? How are they distributed among components of X?
- 2. Suppose X is a smooth curve over \mathbb{Z}_p , and let $X(\mathbb{F}_p)$ denote its reduction mod p. Where are the reductions of Weierstrass points on $X(\mathbb{F}_p)$?

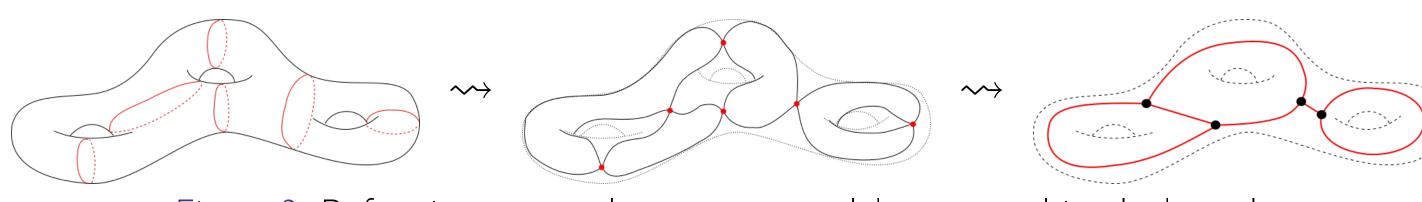


Figure 2. Deforming a smooth curve to a nodal curve, and its dual graph.

Tropical curves

- In a metric graph every edge has a real, positive length. A deformation of a smooth curve to a nodal curve can be encoded in a metric graph.
- We call a metric graph a tropical curve to emphasize an analogy with algebraic curves; this analogy carries over to divisors and linear equivalence.
- The canonical divisor of a tropical curve is the divisor $K = \sum_{x \in \Gamma} (\mathrm{val}(x) 2) x$

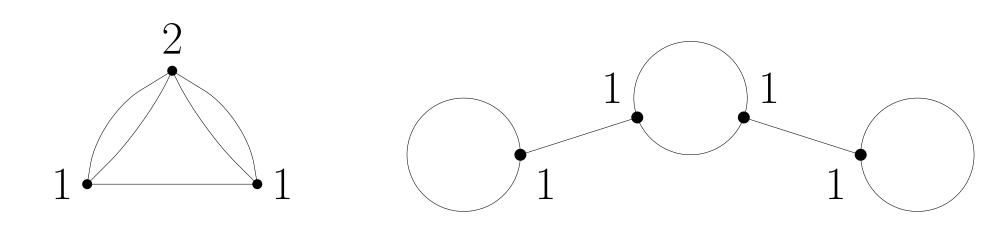


Figure 3. Canonical divisors of tropical curves.

- If Γ is a tropical curve of genus $g, x \in \Gamma$ is a Weierstrass point if $K \sim qx + E$ for some effective divisor E.
- The Weierstrass locus $L_W=L_W(\Gamma)$ is the subset of all Weierstrass points.

Figure 4. Weierstrass locus and weights of tropical curves.

For each oriented segment ν of Γ , denote the minimum slope $s_0^\nu(K)=\min\{\operatorname{slope}_\nu(f): f\in \operatorname{Rat}(K)\}$ where $\operatorname{Rat}(K)=$ all piecewise-linear functions on Γ whose poles are bounded by K.

Slope sets

• Minimum slopes are attained for reduced divisors.

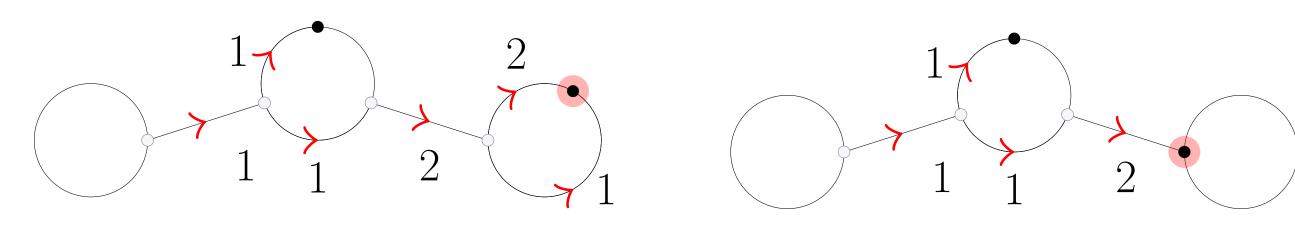


Figure 5. Minimum slopes $\{s_0^{\nu}(K)\} = \{-1, -2\}$ and $\{s_0^{\nu}(K)\} = \{0, 0, -2\}$, via reduced divisor.

Calculate Weierstrass weights via minimum slopes:

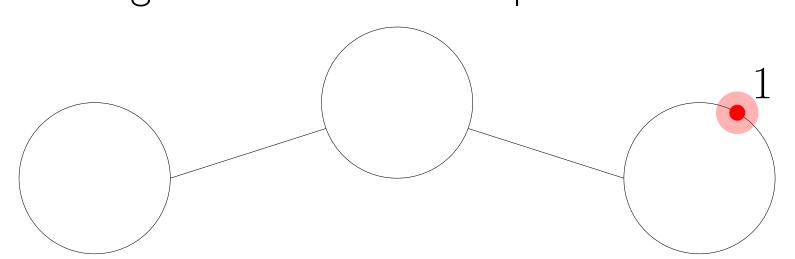


Figure 6. Weierstrass weight w(A) = (3+1)(0-1) - (-2-3) = 1.

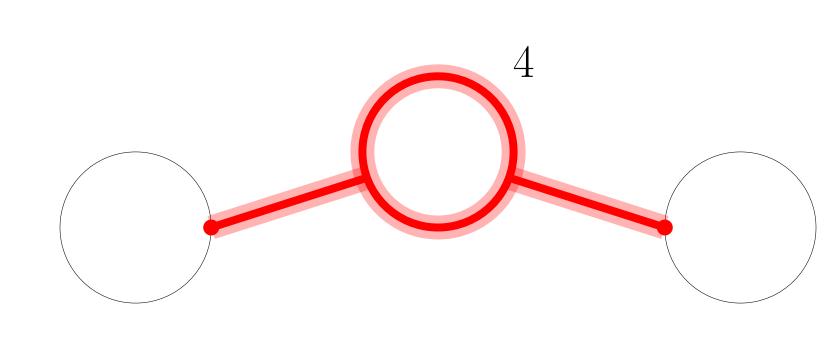


Figure 7. Weierstrass weight w(A) = (3+1)(1-1) - (-1-1-1-1) = 4.

Tropical Problem

What is a "good" definition of weights for tropical Weierstrass points?

- ullet Components of L_W can be isolated points, or can have positive length.
- We call a subset A of a tropical curve L_W -measurable if $A\cap L_W$ contains only 'whole components' of L_W .

Tropical Weierstrass weights

For a closed, connected subset $A\subset \Gamma$, the Weierstrass weight of A is $w(A)=(g+1)(g(A)-1)-\sum_{i=1}^n(s_0^\nu(K)-1),$

where

- g(A) is the genus, i.e. first Betti number, of A;
- ∂A is the set of outgoing directions from A;
- $s_0^{\nu}(K)$ is the minimum slope along ν in $\mathrm{Rat}(K)$.

In particular, the total Weierstrass weight $w(\Gamma)$ is g^2-1 .

Theorem (AGR, 2023)

- 1. The Weierstrass weight w(A) is additive on L_W -measurable subsets of Γ .
- 2. If A is L_W -measurable, then for any algebraic curve X tropicalizing to Γ , the total weight of Weierstrass points tropicalizing to A is $g \cdot w(A)$.