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1. Let E ⊂ R1. Show that the characteristic function χE(x) is the limit of a sequence of
continuous functions if and only if E is both Fσ and Gδ.

Proof. (⇒) First, suppose χE(x) is the (pointwise) limit of a sequence {fn} of continuous
functions. Let Un be the open set {x : fn(x) > 1/2} ⊂ R, and let Vn be the closed set
{x : fn(x) ≥ 1/2}. Then define

Ũn =
⋃
i≥n

Ui = {x : fi(x) > 1/2 for some i ≥ n},

Ṽn =
⋂
i≥n

Vi = {x : fi(x) ≥ 1/2 for all i ≥ n}.

Note that each Ũn (resp. Ṽn) is open (closed) because it is a union of open sets (intersection
of closed sets). We claim that E = ∩nŨn, which shows that E is Gδ. Indeed,⋂

n≥1

Ũn =
⋂
n≥1

{x : fi(x) > 1/2 for some i ≥ n}

= {x : lim sup
n→∞

fn(x) > 1/2}

= {x : χE(x) > 1/2} = E

by our assumption that fn → χE pointwise. We claim also that E = ∪nṼn, which shows E is
Fσ. Indeed, ⋃

n≥1

Ṽn =
⋃
n≥1

{x : fi(x) ≥ 1/2 for all i ≥ n}

= {x : lim inf
n→∞

fn(x) ≥ 1/2}

= {x : χE(x) ≥ 1/2} = E.

(⇐) Now suppose that E is both Fσ and Gδ. Let Vn be a sequence of closed sets such
that E = ∪nVn and let Un be a sequence of open sets such that E = ∩nUn. Without loss
of generality, we may assume that the Vn are increasing, i.e. Vn ⊂ Vn+1, by replacing the
sequence with Ṽn = ∪ni=1Vi. Similarly, we may assume that Un ⊃ Un+1. For each n, we have

Vn ⊂ E ⊂ Un.

We claim that there exists a continuous function fn, for each n, such that

fn(x) =

{
1 if x ∈ Vn,
0 if x 6∈ Un.

This follows from Urysohn’s lemma, since Vn and U cn are disjoint closed subsets of R, and
R is a metric space and thus normal (i.e. disjoint closed sets are separated by disjoint open
neighborhoods). The sequence {fn} converges pointwise to χE , as desired.

1



Analysis Qualifying Review
May 7, 2015

Harry Richman
Summer 2015

2. Let {gn} be a sequence of measurable functions on [a, b], satisfying

(a) |gn(x)| ≤M , a.e. x ∈ [a, b];

(b) for every c ∈ [a, b], limn→∞
∫ c
a
gn(x)dx = 0.

Show that for any f ∈ L1[a, b],

lim
n→∞

∫ b

a

f(x)gn(x)dx = 0.

Proof. We first observe that condition (b) implies that for any interval [c1, c2] ⊂ [a, b], we
have limn→∞

∫ c2
c1
gn(x)dx = 0 since

lim
n→∞

∣∣∣∣ ∫ c2

c1

gn(x)dx

∣∣∣∣ = lim
n→∞

∣∣∣∣ ∫ c2

a

gn(x)dx−
∫ c1

a

gn(x)dx

∣∣∣∣
≤ lim
n→∞

∣∣∣∣ ∫ c2

a

gn(x)dx

∣∣∣∣+ lim
n→∞

∣∣∣∣ ∫ c1

a

gn(x)dx

∣∣∣∣ = 0.

We next claim that for any measurable set E ⊂ [a, b], limn→∞
∫
E
gn(x)dx = 0. Indeed, the

previous observation implies this is true for any finite union of intervals. For any ε > 0, there
is some finite union of intervals Ẽ ⊃ E such that µ(Ẽ − E) < ε, so

lim
n→∞

∣∣∣∣ ∫
E

gn(x)dx

∣∣∣∣ = lim
n→∞

∣∣∣∣ ∫
Ẽ

gn(x)dx−
∫
Ẽ−E

gn(x)dx

∣∣∣∣
≤ lim
n→∞

∣∣∣∣ ∫
Ẽ

gn(x)dx

∣∣∣∣+ lim
n→∞

∫
Ẽ−E

|gn(x)|dx ≤Mε

so as we let ε→ 0 we see that the limit must be 0.

Now we show that the desired equality holds for any simple function f̃ ∈ L1[a, b]. Indeed, if
f̃ =

∑m
k=1 akχEk for some measureable sets Ek ⊂ [a, b] and ak ∈ R then

lim
n→∞

∣∣∣∣ ∫ b

a

f̃(x)gn(x)dx

∣∣∣∣ = lim
n→∞

∣∣∣∣ ∫ b

a

( m∑
k=1

akχEk(x)

)
gn(x)dx

∣∣∣∣ = lim
n→∞

∣∣∣∣ m∑
k=1

ak

∫
Ek

gn(x)dx

∣∣∣∣
≤ lim
n→∞

m∑
k=1

∣∣∣∣ak ∫
Ek

gn(x)dx

∣∣∣∣ =

m∑
k=1

|ak| lim
n→∞

∣∣∣∣ ∫
Ek

gn(x)dx

∣∣∣∣ = 0.

Finally, since simple functions are dense in L1[a, b], for any δ > 0 there is a simple function f̃
such that ‖f − f̃‖1 < δ. Then

lim
n→∞

∣∣∣∣ ∫ b

a

f(x)gn(x)dx

∣∣∣∣ = lim
n→∞

∣∣∣∣ ∫ b

a

f̃(x)gn(x)dx+

∫ b

a

(f − f̃)(x)gn(x)dx

∣∣∣∣
≤ lim
n→∞

∣∣∣∣ ∫ b

a

f̃(x)gn(x)dx

∣∣∣∣+ lim
n→∞

∫ b

a

|(f − f̃)(x)| · |gn(x)|dx

≤ 0 +M

∫ b

a

|(f − f̃)(x)|dx < Mδ,

so the claim follows from letting δ → 0.
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3. Let fk(x), k = 1, 2, . . . be increasing functions on [a, b]. Assume

∞∑
k=1

fk(x)

is convergent on [a, b]. Show that( ∞∑
k=1

fk(x)

)′
=

∞∑
k=1

f ′k(x), a.e. x ∈ [a, b].

Proof. Let F (x) =
∑∞
k=1 fk(x), and let Tn(x) =

∑∞
k=n fk(x) denote the tail of this summa-

tion, so that

F (x) =

n−1∑
k=1

fk(x) + Tn(x)

for any n ≥ 1. Taking derivatives, we have

F ′(x) =

n−1∑
k=1

f ′k(x) + T ′n(x),

so it suffices to show that as n→∞, T ′n(x)→ 0 for a.e. x.

Note that since each fk is increasing all the derivatives f ′k, F
′, T ′n are non-negative. Thus for

fixed x, the sequence {T ′n(x)}n is monotonically decreasing and bounded below by 0, so for
each x, lim

n→∞
T ′n(x) = lim inf

n→∞
T ′n(x) exists. (We include the possibility that this limit is +∞.)

By Fatou’s lemma, ∫ b

a

(lim inf
n→∞

T ′n(x))dx ≤ lim inf
n→∞

∫ b

a

T ′n(x)dx,

and by the fundamental theorem of calculus, since Tn is increasing we have∫ b

a

T ′n(x)dx ≤ Tn(b)− Tn(a).

We are given that the infinite summation defining F (x) converges, so for all x ∈ [a, b] we have
Tn(x)→ 0 as n→∞. Thus∫ b

a

( lim
n→∞

T ′n(x))dx ≤ lim inf
n→∞

∫ b

a

T ′n(x)dx ≤ lim inf
n→∞

(Tn(b)− Tn(a)) = 0,

and since the first function is non-negative this implies lim
n→∞

T ′n(x) ≡ 0 a.e., as desired.

4. (a) Assume that f ∈ L∞(R), and f is continuous at 0. Show that

lim
n→∞

∫
n

π(1 + (nx)2)
f(x)dx = f(0).
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(b) Assume that f ∈ L∞(R). Show that

lim
n→∞

∫
n

π(1 + n2(x− y)2)
f(y)dy = f(x) a.e. x ∈ R.

(Hint:
∫

1
π(1+y2)dy = 1.)

Proof. (a) By the change of variables u = nx,

lim
n→∞

∫
n

π(1 + (nx)2)
f(x)dx = lim

n→∞

∫
f(u/n)

π(1 + u2)
du,

so it suffices to show that the right-hand limit is equal to f(0). Since f ∈ L∞(R), there
is some M <∞ such that |f(x)| < M a.e., and since f is continuous at 0, for any ε > 0
there is some δ such that |f(x) − f(0)| < ε for any −δ < x < δ. (In particular, this

implies |f(0)| < M .) Following the hint, we have
∫ f(0)
π(1+y2)dy = f(0) so∣∣∣∣f(0)−

∫
f(u/n)

π(1 + u2)
du

∣∣∣∣ =

∣∣∣∣ ∫ f(0)− f(u/n)

π(1 + u2)
du

∣∣∣∣
≤
∫
|u|<nδ

|f(0)− f(u/n)|
π(1 + u2)

du+

∫
|u|≥nδ

|f(0)− f(u/n)|
π(1 + u2)

du

≤
∫
|u|<nδ

ε

π(1 + u2)
du+

∫
|u|≥nδ

2M

π(1 + u2)
du

≤ ε+ 2M

∫
|u|≥nδ

1

π(1 + u2)
du,

which holds for arbitrary n. As n → ∞, it is clear that the last integral approaches 0,
so we have

lim
n→∞

∣∣∣∣f(0)−
∫

f(u/n)

π(1 + u2)
du

∣∣∣∣ =

∣∣∣∣f(0)− lim
n→∞

∫
f(u/n)

π(1 + u2)
du

∣∣∣∣ ≤ ε.
Since this holds for arbitrary ε, this shows f(0) = limn→∞

∫ f(u/n)
π(1+u2)du as desired.

(b) Since f is measurable, by Luzin’s theorem for any ε > 0 there is a continuous function
f̃ and a closed set E ⊂ R such that f(x) = f̃(x) for all x ∈ E and µ(Ec) < ε. Since
|f(x)| < M a.e. we may also choose f̃ to have this same bound. Then for any x

lim
n→∞

∫
n

π(1 + n2(x− y)2)
f̃(y)dy = f̃(x)

by continuity of f̃ (using the same argument as in part (a)), so for any x ∈ E,∣∣∣∣f(x)− lim
n→∞

∫
n

π(1 + n2(x− y)2)
f(y)dy

∣∣∣∣ ≤ lim
n→∞

∫
n

π(1 + n2(x− y)2)
|f̃(y)− f(y)|dy
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= lim
n→∞

(∫
E

n|f̃(y)− f(y)|
π(1 + n2(x− y)2)

dy +

∫
Ec

n|f̃(y)− f(y)|
π(1 + n2(x− y)2)

dy

)
≤ lim
n→∞

(
0 + 2M

∫
Ec

n

π(1 + n2(x− y)2)
dy

)
If we choose x ∈ int(E), the interior of E, so E contains the open interval (x− δ, x+ δ)
for some δ > 0, then

lim
n→∞

∫
Ec

n

π(1 + n2(x− y)2)
dy ≤ lim

n→∞

∫
|x−y|>δ

n

π(1 + n2(x− y)2)
dy = 0,

so f(x) = limn→∞
∫

n
π(1+n2(x−y)2)f(y)dy for any x ∈ int(E). Then the measure of the

points in R where this equality does not hold is bounded above by µ(Ec) = µ(Ec) < ε,
and since ε was arbitrary this equality is true almost everywhere.

5. Let {fn} be a sequence of functions in Lp(Rn), 1 < p <∞, which converge almost everywhere
to a function f ∈ Lp(Rn), and suppose that there is a constant M such that ‖fn‖p ≤ M for
all n. Show that for every g ∈ Lq(Rn), q the conjugate of p,∫

fg = lim
n→∞

∫
fng.

Is the statement true for p = 1?

(Hint: you may want to use Egorov’s theorem.)

Proof. We first show the statement is false for p = 1. Indeed, consider the functions fn on R
defined by

fn(x) =

{
1/n if 0 < x < n

0 otherwise.

Then ‖fn‖1 = 1 for all n, and the sequence {fn} converges pointwise to the zero function
f = 0. Taking the constant function g = 1 ∈ L∞(R), we have

0 =

∫
fg 6= lim

n→∞

∫
fng = 1.

Now we prove the claim for 1 < p <∞. The proof relies on the fact that for any h ∈ L1(Rn),∫
Rn
h = lim

R→∞

∫
BR

h ⇔ lim
R→∞

∫
Rn−BR

h = 0

where BR ⊂ Rn denotes the ball of radius R around the origin in Rn, and

lim
ε→0

∫
Eε

h = 0

where Eε is a measureable set whose measure is bounded by ε.
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By Egorov’s theorem, for any ε > 0 (and R > 0 fixed) there is a subset Eε ⊂ BR such that
µ(Eε) ≤ ε and the convergence fn → f is uniform on BR − Eε. Then∣∣∣∣ ∫ fg −

∫
fng

∣∣∣∣ ≤ ∫ |f − fn||g|
=

∫
BR−Eε

|f − fn||g|+
∫
Eε

|f − fn||g|+
∫
Rn−BR

|f − fn||g|.

We may use Holder’s inequality to replace the second and third integrals above with expres-
sions independent of n, namely∫

A

|f − fn||g| ≤ ‖f − fn‖p‖g‖q =

(∫
A

|f − fn|p
)1/p(∫

A

|g|q
)1/q

≤ (‖f‖p + ‖fn‖p)‖g‖q ≤ (‖f‖p +M)

(∫
A

|g|q
)1/q

,

and as n→∞ the first integral (on BR−Eε) goes to zero by uniform convergence on a finite
measure space. Thus

lim
n→∞

∣∣∣∣ ∫ fg −
∫
fng

∣∣∣∣ ≤ (‖f‖p +M)

(∫
Eε

|g|q
)1/q

+ (‖f‖p +M)

(∫
Rn−BR

|g|q
)1/q

.

This holds for arbitrary R, ε so taking ε→ 0 and R→∞, we have (since h = |g|q ∈ L1)

lim
n→∞

∣∣∣∣ ∫ fg −
∫
fng

∣∣∣∣ = 0,

so

∫
fg = lim

n→∞

∫
fng as desired.
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Afternoon session

1. Construct an explicit analytic bijection from

{z ∈ C : |z| > 1, z not real and positive}

to
{z ∈ C : Re z > 0}.

(You may write your mapping as a composition of simpler explicit mappings.)

Proof. Take f(z) = (−iz) ◦ 1
2 (z+ 1/z) ◦ (

√
z) =

1

2i
(z1/2 + z−1/2), where we choose the branch

of the square root that is positive on positive real numbers.

2. Let A = {z ∈ C : 5 ≤ |z| ≤ 10}.

(a) Prove or disprove: there is a function f analytic on a neighborhood of A and satisfying
|f(z)| < 1 for |z| = 10, |f(x)| > 1000 for |z| = 5.

(b) Prove or disprove: there is a function f analytic on a neighborhood of A and satisfying
Re f(z) < 1 for |z| = 10, Re f(z) > 1000 for |z| = 5.

Proof. (a) We show such an f exists: consider f(z) = (9/z)n for some positive integer n.
On |z| = 10, |f(z)| = (9/10)n < 1, and on |z| = 5, |f(z)| = (9/5)n will be larger than
1000 for sufficiently large n (e.g. n ≥ 18).

(b) We claim no such f exists. Indeed, since A is connected its image f(A) will be a connected
subset of C. Let L ⊂ C denote the complex numbers with real part = 500. Since A is
compact, its image f(A) is also compact and thus closed. This implies the intersection
L ∩ f(A) is closed. By the open mapping theorem, the interior int(A) must be sent
by f to an open set f(int(A)) ⊂ int(f(A)). Thus L ∩ f(int(A)) is open in the induced
subspace topology of L. We identify two possible cases: either L∩f(int(A)) ( L∩f(A),
or L ∩ f(int(A)) = L ∩ f(A).

In the first case,

L ∩ f(∂A) = L ∩ f(A− int(A)) ⊃ (L ∩ f(A))− (L ∩ f(int(A)))

is non-empty so some point z in the boundary of A (so |z| = 5 or 10) must be sent to
f(z) with real part = 500, contradicting the given hypotheses for f .

In the second case, the intersection L ∩ f(int(A)) = L ∩ f(A) is both open and closed
so it is either empty or the entire line L. It cannot be the entire line because f(A) is
compact so it must be empty. Then since f(A) is connected, it must lie entirely on one
side of L (e.g. Re f(z) < 500) or on the other (Re f(z) > 500), which also contradicts
the hypotheses.

3. For f analytic on D let
σ(f) = sup{#f−1(w) : w ∈ C}.

7



Analysis Qualifying Review
May 7, 2015

Harry Richman
Summer 2015

(a) Prove or disprove: there exists a sequence fn of functions analytic on D converging
uniformly on compact sets of D to a limit function f with all σ(fn) = 3 but σ(f) = 4.

(b) Prove or disprove: there exists a sequence fn of functions analytic on D converging
uniformly on compact sets of D to a limit function f with all σ(fn) = 4 but σ(f) = 3.

Proof. (a) We claim such a sequence does not exist. Indeed, suppose the sequence fn con-
verges to f as specified, such that σ(f) = 4. We may assume without loss of gen-
erality that f has four zeros, by adding the appropriate constant to all f, fn. Let
z1, . . . , z4 ∈ D denote the four (distinct) zeros of f , each with some positive multi-
plicity. For each i = 1, . . . , 4 choose some closed contour γi ⊂ D that encloses zi and
no other zeros, and let Ki denote the compact region enclosed by this contour. Let
εi = min{|f(z)| : z ∈ γi} > 0 (since f has no zeros on γi). Note that f − fn → 0 uni-
formly on the compact sets Ki, so for sufficiently large n, |f(z)−fn(z)| < εi for all z ∈ γi.
This implies f and fn have the same number of zeros (with multiplicty) in each Ki by
Rouche’s theorem. Thus σ(fn) ≥ 4 for sufficiently large n, contradicting the hypothesis.

(b) We show that such a sequence exists as follows. Let φ(z) =
z + i

iz + 1
be a Möbius trans-

formation sending the unit disk to the upper half-plane; then set fn(z) = φ(z)6+1/n

(choosing the principal branch of the logarithm), so the sequence fn converges uniformly
on compacts sets to the limit function f(z) = φ(z)6. It is straightforward to verify that
for any α > 0,

#(φα)−1(w) =

{
dα/2e if 0 < Arg w < {πα}
dα/2e − 1 if {πα} ≤ Arg w ≤ 2π

where φα(z) := φ(z)α and we define {πα} to be the unique angle equivalent to πα in the
range (0, 2π], so σ(φα) = dα/2e. Thus σ(fn) = d3 + 1

2ne = 4, while σ(f) = 3 as desired.

4. Let f : D→ D be an analytic function defined on a neighborhood of D and satisfying

• f(D) ⊂ D;

• f(0) = 0.

Let f◦n = f ◦ · · · ◦ f , n times. Show that f◦n(z)→ 0 for z ∈ D.

Proof. Consider the function g(z) = f(z)/z. Since f(0) = 0, g is analytic on D, and on the
boundary ∂D = {z : |z| = 1}, the magnitudes of f(z) and g(z) coincide. Thus

max
|z|=1
{|g(z)|} = max

|z|=1
{|f(z)/z|} = max

|z|=1
{|f(z)|}.

Call this maximum λ (which exists by compactness of ∂D); since f(D) ⊂ D we have 0 ≤ λ < 1.
By the maximum modulus principle,

|g(z)| = |f(z)/z| ≤ λ for all z ∈ D.
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But this is equivalent to |f(z)| ≤ λ|z| for all z ∈ D, and by induction this implies

|f◦n(z)| ≤ λn|z| → 0 as n→∞, (z ∈ D fixed)

so f◦n(z)→ 0 as desired.

5. Suppose {fn} is a uniformly bounded sequence of analytic functions on a domain Ω such that
{fn(z)} converges for every z ∈ Ω.

(a) Show that the convergence is uniform on every compact subset of Ω.

(b) Must {f ′n} converge uniformly on every compact subset of Ω? Prove or disprove.

Proof. (a) Fix a compact subset K ⊂ Ω. Suppose for a contradiction that the convergence
fn → f is not uniform on K. Then for some ε > 0, there are infinitely many fn such
that

sup
z∈K
|fn(z)− f(z)| > ε.

Let {fnk} consist of all such functions. Then {fnk} is also uniformly bounded, so by
Montel’s theorem there is a subsequence fnkj that converges uniformly to some function

g analytic on K, i.e.

lim
j→∞

(
sup
z∈K
|fnkj (z)− g(z)|

)
= 0.

Then fnkj → g pointwise, and since fnkj is also a subsequence of {fn}, which converges

pointwise to f , we must have g = f . But this contradicts our assumption that

sup
z∈K
|fnkj (z)− g(z)| = sup

z∈K
|fnkj (z)− f(z)| > ε

for all j, so we must have uniform convergence on K as desired.

(b) Yes; {f ′n} must converge uniformly on compact subsets as well. Indeed, for a fixed
compact subset K ⊂ Ω we may choose an open neighborhood K ⊂ Ω1 ⊂ Ω such that Ω1

has compact closure; let K1 denote this closure. Then take another open neighborhood
K1 ⊂ Ω2 ⊂ Ω with compact closure K2. (We may assume Ω1 and Ω2 are connected.)
Then the distance |z−w| for z ∈ Ω1, w ∈ ∂K2 is bounded below by some constant ε > 0.
Moreover, the hypotheses on fn gives a uniform bound |fn(z)| < M for all z ∈ K2 and
all n (where M may depend on K2). By Cauchy’s integral formula,

f ′n(z) =
1

2πi

∮
∂K2

fn(ξ)

(ξ − z)2
dξ

for any z ∈ Ω1, so taking magnitudes

|f ′n(z)| ≤ 1

2π

∮
∂K2

|fn(ξ)|
|ξ − z|2

dξ ≤ 1

2π
|∂K2|

M

ε2
=: M ′
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which shows that {f ′n} is uniformly bounded on Ω1. Also by Cauchy’s formula,

|f ′n(z)− f ′(z)| =
∣∣∣∣ 1

2πi

∮
∂K2

fn(ξ)− f(ξ)

(ξ − z)2
dξ

∣∣∣∣
≤ 1

2π
|∂K2|

supK2
|fn(ξ)− f(ξ)|
ε2

→ 0 as n→∞

by uniform convergence of fn → f , so f ′n → f ′ pointwise on Ω1. Thus we have uniform
convergence of f ′n on K by the argument in (a).
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