Analysis Qualifying Review, solutions Morning session

1. Let $E \subset \mathbb{R}^{1}$. Show that the characteristic function $\chi_{E}(x)$ is the limit of a sequence of continuous functions if and only if E is both F_{σ} and G_{δ}.

Proof. (\Rightarrow) First, suppose $\chi_{E}(x)$ is the (pointwise) limit of a sequence $\left\{f_{n}\right\}$ of continuous functions. Let U_{n} be the open set $\left\{x: f_{n}(x)>1 / 2\right\} \subset \mathbb{R}$, and let V_{n} be the closed set $\left\{x: f_{n}(x) \geq 1 / 2\right\}$. Then define

$$
\begin{array}{r}
\tilde{U}_{n}=\bigcup_{i \geq n} U_{i}=\left\{x: f_{i}(x)>1 / 2 \text { for some } i \geq n\right\}, \\
\tilde{V}_{n}=\bigcap_{i \geq n} V_{i}=\left\{x: f_{i}(x) \geq 1 / 2 \text { for all } i \geq n\right\} .
\end{array}
$$

Note that each \tilde{U}_{n} (resp. \tilde{V}_{n}) is open (closed) because it is a union of open sets (intersection of closed sets). We claim that $E=\cap_{n} \tilde{U}_{n}$, which shows that E is G_{δ}. Indeed,

$$
\begin{aligned}
\bigcap_{n \geq 1} \tilde{U}_{n} & =\bigcap_{n \geq 1}\left\{x: f_{i}(x)>1 / 2 \text { for some } i \geq n\right\} \\
& =\left\{x: \limsup _{n \rightarrow \infty} f_{n}(x)>1 / 2\right\} \\
& =\left\{x: \chi_{E}(x)>1 / 2\right\}=E
\end{aligned}
$$

by our assumption that $f_{n} \rightarrow \chi_{E}$ pointwise. We claim also that $E=\cup_{n} \tilde{V}_{n}$, which shows E is F_{σ}. Indeed,

$$
\begin{aligned}
\bigcup_{n \geq 1} \tilde{V}_{n} & =\bigcup_{n \geq 1}\left\{x: f_{i}(x) \geq 1 / 2 \text { for all } i \geq n\right\} \\
& =\left\{x: \liminf _{n \rightarrow \infty} f_{n}(x) \geq 1 / 2\right\} \\
& =\left\{x: \chi_{E}(x) \geq 1 / 2\right\}=E
\end{aligned}
$$

(\Leftarrow) Now suppose that E is both F_{σ} and G_{δ}. Let V_{n} be a sequence of closed sets such that $E=\cup_{n} V_{n}$ and let U_{n} be a sequence of open sets such that $E=\cap_{n} U_{n}$. Without loss of generality, we may assume that the V_{n} are increasing, i.e. $V_{n} \subset V_{n+1}$, by replacing the sequence with $\tilde{V}_{n}=\cup_{i=1}^{n} V_{i}$. Similarly, we may assume that $U_{n} \supset U_{n+1}$. For each n, we have

$$
V_{n} \subset E \subset U_{n}
$$

We claim that there exists a continuous function f_{n}, for each n, such that

$$
f_{n}(x)= \begin{cases}1 & \text { if } x \in V_{n} \\ 0 & \text { if } x \notin U_{n}\end{cases}
$$

This follows from Urysohn's lemma, since V_{n} and U_{n}^{c} are disjoint closed subsets of \mathbb{R}, and \mathbb{R} is a metric space and thus normal (i.e. disjoint closed sets are separated by disjoint open neighborhoods). The sequence $\left\{f_{n}\right\}$ converges pointwise to χ_{E}, as desired.
2. Let $\left\{g_{n}\right\}$ be a sequence of measurable functions on $[a, b]$, satisfying
(a) $\left|g_{n}(x)\right| \leq M$, a.e. $x \in[a, b]$;
(b) for every $c \in[a, b], \lim _{n \rightarrow \infty} \int_{a}^{c} g_{n}(x) d x=0$.

Show that for any $f \in L^{1}[a, b]$,

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) g_{n}(x) d x=0
$$

Proof. We first observe that condition (b) implies that for any interval $\left[c_{1}, c_{2}\right] \subset[a, b]$, we have $\lim _{n \rightarrow \infty} \int_{c_{1}}^{c_{2}} g_{n}(x) d x=0$ since

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\int_{c_{1}}^{c_{2}} g_{n}(x) d x\right| & =\lim _{n \rightarrow \infty}\left|\int_{a}^{c_{2}} g_{n}(x) d x-\int_{a}^{c_{1}} g_{n}(x) d x\right| \\
& \leq \lim _{n \rightarrow \infty}\left|\int_{a}^{c_{2}} g_{n}(x) d x\right|+\lim _{n \rightarrow \infty}\left|\int_{a}^{c_{1}} g_{n}(x) d x\right|=0
\end{aligned}
$$

We next claim that for any measurable set $E \subset[a, b], \lim _{n \rightarrow \infty} \int_{E} g_{n}(x) d x=0$. Indeed, the previous observation implies this is true for any finite union of intervals. For any $\epsilon>0$, there is some finite union of intervals $\tilde{E} \supset E$ such that $\mu(\tilde{E}-E)<\epsilon$, so

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\int_{E} g_{n}(x) d x\right| & =\lim _{n \rightarrow \infty}\left|\int_{\tilde{E}} g_{n}(x) d x-\int_{\tilde{E}-E} g_{n}(x) d x\right| \\
& \leq \lim _{n \rightarrow \infty}\left|\int_{\tilde{E}} g_{n}(x) d x\right|+\lim _{n \rightarrow \infty} \int_{\tilde{E}-E}\left|g_{n}(x)\right| d x \leq M \epsilon
\end{aligned}
$$

so as we let $\epsilon \rightarrow 0$ we see that the limit must be 0 .
$\underset{\tilde{f}}{\text { Now we she }}$ show that the desired equality holds for any simple function $\tilde{f} \in L^{1}[a, b]$. Indeed, if $\tilde{f}=\sum_{k=1}^{m} a_{k} \chi_{E_{k}}$ for some measureable sets $E_{k} \subset[a, b]$ and $a_{k} \in \mathbb{R}$ then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\int_{a}^{b} \tilde{f}(x) g_{n}(x) d x\right| & =\lim _{n \rightarrow \infty}\left|\int_{a}^{b}\left(\sum_{k=1}^{m} a_{k} \chi_{E_{k}}(x)\right) g_{n}(x) d x\right|=\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{m} a_{k} \int_{E_{k}} g_{n}(x) d x\right| \\
& \leq \lim _{n \rightarrow \infty} \sum_{k=1}^{m}\left|a_{k} \int_{E_{k}} g_{n}(x) d x\right|=\sum_{k=1}^{m}\left|a_{k}\right| \lim _{n \rightarrow \infty}\left|\int_{E_{k}} g_{n}(x) d x\right|=0
\end{aligned}
$$

Finally, since simple functions are dense in $L^{1}[a, b]$, for any $\delta>0$ there is a simple function \tilde{f} such that $\|f-\tilde{f}\|_{1}<\delta$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\int_{a}^{b} f(x) g_{n}(x) d x\right| & =\lim _{n \rightarrow \infty}\left|\int_{a}^{b} \tilde{f}(x) g_{n}(x) d x+\int_{a}^{b}(f-\tilde{f})(x) g_{n}(x) d x\right| \\
& \leq \lim _{n \rightarrow \infty}\left|\int_{a}^{b} \tilde{f}(x) g_{n}(x) d x\right|+\lim _{n \rightarrow \infty} \int_{a}^{b}|(f-\tilde{f})(x)| \cdot\left|g_{n}(x)\right| d x \\
& \leq 0+M \int_{a}^{b}|(f-\tilde{f})(x)| d x<M \delta,
\end{aligned}
$$

so the claim follows from letting $\delta \rightarrow 0$.
3. Let $f_{k}(x), k=1,2, \ldots$ be increasing functions on $[a, b]$. Assume

$$
\sum_{k=1}^{\infty} f_{k}(x)
$$

is convergent on $[a, b]$. Show that

$$
\left(\sum_{k=1}^{\infty} f_{k}(x)\right)^{\prime}=\sum_{k=1}^{\infty} f_{k}^{\prime}(x), \quad \text { a.e. } x \in[a, b]
$$

Proof. Let $F(x)=\sum_{k=1}^{\infty} f_{k}(x)$, and let $T_{n}(x)=\sum_{k=n}^{\infty} f_{k}(x)$ denote the tail of this summation, so that

$$
F(x)=\sum_{k=1}^{n-1} f_{k}(x)+T_{n}(x)
$$

for any $n \geq 1$. Taking derivatives, we have

$$
F^{\prime}(x)=\sum_{k=1}^{n-1} f_{k}^{\prime}(x)+T_{n}^{\prime}(x)
$$

so it suffices to show that as $n \rightarrow \infty, T_{n}^{\prime}(x) \rightarrow 0$ for a.e. x.
Note that since each f_{k} is increasing all the derivatives $f_{k}^{\prime}, F^{\prime}, T_{n}^{\prime}$ are non-negative. Thus for fixed x, the sequence $\left\{T_{n}^{\prime}(x)\right\}_{n}$ is monotonically decreasing and bounded below by 0 , so for each $x, \lim _{n \rightarrow \infty} T_{n}^{\prime}(x)=\liminf _{n \rightarrow \infty} T_{n}^{\prime}(x)$ exists. (We include the possibility that this limit is $+\infty$.) By Fatou's lemma,

$$
\int_{a}^{b}\left(\liminf _{n \rightarrow \infty} T_{n}^{\prime}(x)\right) d x \leq \liminf _{n \rightarrow \infty} \int_{a}^{b} T_{n}^{\prime}(x) d x
$$

and by the fundamental theorem of calculus, since T_{n} is increasing we have

$$
\int_{a}^{b} T_{n}^{\prime}(x) d x \leq T_{n}(b)-T_{n}(a)
$$

We are given that the infinite summation defining $F(x)$ converges, so for all $x \in[a, b]$ we have $T_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$. Thus

$$
\int_{a}^{b}\left(\lim _{n \rightarrow \infty} T_{n}^{\prime}(x)\right) d x \leq \liminf _{n \rightarrow \infty} \int_{a}^{b} T_{n}^{\prime}(x) d x \leq \liminf _{n \rightarrow \infty}\left(T_{n}(b)-T_{n}(a)\right)=0
$$

and since the first function is non-negative this implies $\lim _{n \rightarrow \infty} T_{n}^{\prime}(x) \equiv 0$ a.e., as desired.
4. (a) Assume that $f \in L^{\infty}(\mathbb{R})$, and f is continuous at 0 . Show that

$$
\lim _{n \rightarrow \infty} \int \frac{n}{\pi\left(1+(n x)^{2}\right)} f(x) d x=f(0)
$$

(b) Assume that $f \in L^{\infty}(\mathbb{R})$. Show that

$$
\lim _{n \rightarrow \infty} \int \frac{n}{\pi\left(1+n^{2}(x-y)^{2}\right)} f(y) d y=f(x) \quad \text { a.e. } x \in \mathbb{R}
$$

(Hint: $\int \frac{1}{\pi\left(1+y^{2}\right)} d y=1$.)
Proof. (a) By the change of variables $u=n x$,

$$
\lim _{n \rightarrow \infty} \int \frac{n}{\pi\left(1+(n x)^{2}\right)} f(x) d x=\lim _{n \rightarrow \infty} \int \frac{f(u / n)}{\pi\left(1+u^{2}\right)} d u
$$

so it suffices to show that the right-hand limit is equal to $f(0)$. Since $f \in L^{\infty}(\mathbb{R})$, there is some $M<\infty$ such that $|f(x)|<M$ a.e., and since f is continuous at 0 , for any $\epsilon>0$ there is some δ such that $|f(x)-f(0)|<\epsilon$ for any $-\delta<x<\delta$. (In particular, this implies $|f(0)|<M$.) Following the hint, we have $\int \frac{f(0)}{\pi\left(1+y^{2}\right)} d y=f(0)$ so

$$
\begin{aligned}
\left|f(0)-\int \frac{f(u / n)}{\pi\left(1+u^{2}\right)} d u\right| & =\left|\int \frac{f(0)-f(u / n)}{\pi\left(1+u^{2}\right)} d u\right| \\
& \leq \int_{|u|<n \delta} \frac{|f(0)-f(u / n)|}{\pi\left(1+u^{2}\right)} d u+\int_{|u| \geq n \delta} \frac{|f(0)-f(u / n)|}{\pi\left(1+u^{2}\right)} d u \\
& \leq \int_{|u|<n \delta} \frac{\epsilon}{\pi\left(1+u^{2}\right)} d u+\int_{|u| \geq n \delta} \frac{2 M}{\pi\left(1+u^{2}\right)} d u \\
& \leq \epsilon+2 M \int_{|u| \geq n \delta} \frac{1}{\pi\left(1+u^{2}\right)} d u
\end{aligned}
$$

which holds for arbitrary n. As $n \rightarrow \infty$, it is clear that the last integral approaches 0 , so we have

$$
\lim _{n \rightarrow \infty}\left|f(0)-\int \frac{f(u / n)}{\pi\left(1+u^{2}\right)} d u\right|=\left|f(0)-\lim _{n \rightarrow \infty} \int \frac{f(u / n)}{\pi\left(1+u^{2}\right)} d u\right| \leq \epsilon
$$

Since this holds for arbitrary ϵ, this shows $f(0)=\lim _{n \rightarrow \infty} \int \frac{f(u / n)}{\pi\left(1+u^{2}\right)} d u$ as desired.
(b) Since f is measurable, by Luzin's theorem for any $\epsilon>0$ there is a continuous function \tilde{f} and a closed set $E \subset \mathbb{R}$ such that $f(x)=\tilde{f}(x)$ for all $x \in E$ and $\mu\left(E^{c}\right)<\epsilon$. Since $|f(x)|<M$ a.e. we may also choose \tilde{f} to have this same bound. Then for any x

$$
\lim _{n \rightarrow \infty} \int \frac{n}{\pi\left(1+n^{2}(x-y)^{2}\right)} \tilde{f}(y) d y=\tilde{f}(x)
$$

by continuity of \tilde{f} (using the same argument as in part (a)), so for any $x \in E$,

$$
\left|f(x)-\lim _{n \rightarrow \infty} \int \frac{n}{\pi\left(1+n^{2}(x-y)^{2}\right)} f(y) d y\right| \leq \lim _{n \rightarrow \infty} \int \frac{n}{\pi\left(1+n^{2}(x-y)^{2}\right)}|\tilde{f}(y)-f(y)| d y
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\int_{E} \frac{n|\tilde{f}(y)-f(y)|}{\pi\left(1+n^{2}(x-y)^{2}\right)} d y+\int_{E^{c}} \frac{n|\tilde{f}(y)-f(y)|}{\pi\left(1+n^{2}(x-y)^{2}\right)} d y\right) \\
& \leq \lim _{n \rightarrow \infty}\left(0+2 M \int_{E^{c}} \frac{n}{\pi\left(1+n^{2}(x-y)^{2}\right)} d y\right)
\end{aligned}
$$

If we choose $x \in \operatorname{int}(E)$, the interior of E, so E contains the open interval $(x-\delta, x+\delta)$ for some $\delta>0$, then

$$
\lim _{n \rightarrow \infty} \int_{E^{c}} \frac{n}{\pi\left(1+n^{2}(x-y)^{2}\right)} d y \leq \lim _{n \rightarrow \infty} \int_{|x-y|>\delta} \frac{n}{\pi\left(1+n^{2}(x-y)^{2}\right)} d y=0
$$

so $f(x)=\lim _{n \rightarrow \infty} \int \frac{n}{\pi\left(1+n^{2}(x-y)^{2}\right)} f(y) d y$ for any $x \in \operatorname{int}(E)$. Then the measure of the points in \mathbb{R} where this equality does not hold is bounded above by $\mu\left(\overline{E^{c}}\right)=\mu\left(E^{c}\right)<\epsilon$, and since ϵ was arbitrary this equality is true almost everywhere.
5. Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$, which converge almost everywhere to a function $f \in L^{p}\left(\mathbb{R}^{n}\right)$, and suppose that there is a constant M such that $\left\|f_{n}\right\|_{p} \leq M$ for all n. Show that for every $g \in L^{q}\left(\mathbb{R}^{n}\right), q$ the conjugate of p,

$$
\int f g=\lim _{n \rightarrow \infty} \int f_{n} g
$$

Is the statement true for $p=1$?
(Hint: you may want to use Egorov's theorem.)
Proof. We first show the statement is false for $p=1$. Indeed, consider the functions f_{n} on \mathbb{R} defined by

$$
f_{n}(x)= \begin{cases}1 / n & \text { if } 0<x<n \\ 0 & \text { otherwise }\end{cases}
$$

Then $\left\|f_{n}\right\|_{1}=1$ for all n, and the sequence $\left\{f_{n}\right\}$ converges pointwise to the zero function $f=0$. Taking the constant function $g=1 \in L^{\infty}(\mathbb{R})$, we have

$$
0=\int f g \neq \lim _{n \rightarrow \infty} \int f_{n} g=1
$$

Now we prove the claim for $1<p<\infty$. The proof relies on the fact that for any $h \in L^{1}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} h=\lim _{R \rightarrow \infty} \int_{B_{R}} h \quad \Leftrightarrow \quad \lim _{R \rightarrow \infty} \int_{\mathbb{R}^{n}-B_{R}} h=0
$$

where $B_{R} \subset \mathbb{R}^{n}$ denotes the ball of radius R around the origin in \mathbb{R}^{n}, and

$$
\lim _{\epsilon \rightarrow 0} \int_{E_{\epsilon}} h=0
$$

where E_{ϵ} is a measureable set whose measure is bounded by ϵ.

By Egorov's theorem, for any $\epsilon>0$ (and $R>0$ fixed) there is a subset $E_{\epsilon} \subset B_{R}$ such that $\mu\left(E_{\epsilon}\right) \leq \epsilon$ and the convergence $f_{n} \rightarrow f$ is uniform on $B_{R}-E_{\epsilon}$. Then

$$
\begin{aligned}
\left|\int f g-\int f_{n} g\right| & \leq \int\left|f-f_{n}\right||g| \\
& =\int_{B_{R}-E_{\epsilon}}\left|f-f_{n}\right||g|+\int_{E_{\epsilon}}\left|f-f_{n}\right||g|+\int_{\mathbb{R}^{n}-B_{R}}\left|f-f_{n}\right||g|
\end{aligned}
$$

We may use Holder's inequality to replace the second and third integrals above with expressions independent of n, namely

$$
\begin{aligned}
\int_{A}\left|f-f_{n} \| g\right| & \leq\left\|f-f_{n}\right\|_{p}\|g\|_{q}=\left(\int_{A}\left|f-f_{n}\right|^{p}\right)^{1 / p}\left(\int_{A}|g|^{q}\right)^{1 / q} \\
& \leq\left(\|f\|_{p}+\left\|f_{n}\right\|_{p}\right)\|g\|_{q} \leq\left(\|f\|_{p}+M\right)\left(\int_{A}|g|^{q}\right)^{1 / q}
\end{aligned}
$$

and as $n \rightarrow \infty$ the first integral (on $B_{R}-E_{\epsilon}$) goes to zero by uniform convergence on a finite measure space. Thus

$$
\lim _{n \rightarrow \infty}\left|\int f g-\int f_{n} g\right| \leq\left(\|f\|_{p}+M\right)\left(\int_{E_{\epsilon}}|g|^{q}\right)^{1 / q}+\left(\|f\|_{p}+M\right)\left(\int_{\mathbb{R}^{n}-B_{R}}|g|^{q}\right)^{1 / q}
$$

This holds for arbitrary R, ϵ so taking $\epsilon \rightarrow 0$ and $R \rightarrow \infty$, we have (since $h=|g|^{q} \in L^{1}$)

$$
\lim _{n \rightarrow \infty}\left|\int f g-\int f_{n} g\right|=0
$$

so $\int f g=\lim _{n \rightarrow \infty} \int f_{n} g$ as desired.

Analysis Qualifying Review, solutions

 Afternoon session1. Construct an explicit analytic bijection from

$$
\{z \in \mathbb{C}:|z|>1, z \text { not real and positive }\}
$$

to

$$
\{z \in \mathbb{C}: \operatorname{Re} z>0\}
$$

(You may write your mapping as a composition of simpler explicit mappings.)
Proof. Take $f(z)=(-i z) \circ \frac{1}{2}(z+1 / z) \circ(\sqrt{z})=\frac{1}{2 i}\left(z^{1 / 2}+z^{-1 / 2}\right)$, where we choose the branch of the square root that is positive on positive real numbers.
2. Let $A=\{z \in \mathbb{C}: 5 \leq|z| \leq 10\}$.
(a) Prove or disprove: there is a function f analytic on a neighborhood of A and satisfying $|f(z)|<1$ for $|z|=10,|f(x)|>1000$ for $|z|=5$.
(b) Prove or disprove: there is a function f analytic on a neighborhood of A and satisfying $\operatorname{Re} f(z)<1$ for $|z|=10$, $\operatorname{Re} f(z)>1000$ for $|z|=5$.

Proof. (a) We show such an f exists: consider $f(z)=(9 / z)^{n}$ for some positive integer n. On $|z|=10,|f(z)|=(9 / 10)^{n}<1$, and on $|z|=5,|f(z)|=(9 / 5)^{n}$ will be larger than 1000 for sufficiently large n (e.g. $n \geq 18$).
(b) We claim no such f exists. Indeed, since A is connected its image $f(A)$ will be a connected subset of \mathbb{C}. Let $L \subset \mathbb{C}$ denote the complex numbers with real part $=500$. Since A is compact, its image $f(A)$ is also compact and thus closed. This implies the intersection $L \cap f(A)$ is closed. By the open mapping theorem, the interior int (A) must be sent by f to an open set $f(\operatorname{int}(A)) \subset \operatorname{int}(f(A))$. Thus $L \cap f(\operatorname{int}(A))$ is open in the induced subspace topology of L. We identify two possible cases: either $L \cap f(\operatorname{int}(A)) \subsetneq L \cap f(A)$, or $L \cap f(\operatorname{int}(A))=L \cap f(A)$.
In the first case,

$$
L \cap f(\partial A)=L \cap f(A-\operatorname{int}(A)) \supset(L \cap f(A))-(L \cap f(\operatorname{int}(A)))
$$

is non-empty so some point z in the boundary of A (so $|z|=5$ or 10) must be sent to $f(z)$ with real part $=500$, contradicting the given hypotheses for f.
In the second case, the intersection $L \cap f(\operatorname{int}(A))=L \cap f(A)$ is both open and closed so it is either empty or the entire line L. It cannot be the entire line because $f(A)$ is compact so it must be empty. Then since $f(A)$ is connected, it must lie entirely on one side of L (e.g. Re $f(z)<500$) or on the other ($\operatorname{Re} f(z)>500$), which also contradicts the hypotheses.
3. For f analytic on \mathbb{D} let

$$
\sigma(f)=\sup \left\{\# f^{-1}(w): w \in \mathbb{C}\right\}
$$

(a) Prove or disprove: there exists a sequence f_{n} of functions analytic on \mathbb{D} converging uniformly on compact sets of \mathbb{D} to a limit function f with all $\sigma\left(f_{n}\right)=3$ but $\sigma(f)=4$.
(b) Prove or disprove: there exists a sequence f_{n} of functions analytic on \mathbb{D} converging uniformly on compact sets of \mathbb{D} to a limit function f with all $\sigma\left(f_{n}\right)=4$ but $\sigma(f)=3$.

Proof. (a) We claim such a sequence does not exist. Indeed, suppose the sequence f_{n} converges to f as specified, such that $\sigma(f)=4$. We may assume without loss of generality that f has four zeros, by adding the appropriate constant to all f, f_{n}. Let $z_{1}, \ldots, z_{4} \in \mathbb{D}$ denote the four (distinct) zeros of f, each with some positive multiplicity. For each $i=1, \ldots, 4$ choose some closed contour $\gamma_{i} \subset \mathbb{D}$ that encloses z_{i} and no other zeros, and let K_{i} denote the compact region enclosed by this contour. Let $\epsilon_{i}=\min \left\{|f(z)|: z \in \gamma_{i}\right\}>0 \quad$ (since f has no zeros on γ_{i}). Note that $f-f_{n} \rightarrow 0$ uniformly on the compact sets K_{i}, so for sufficiently large $n,\left|f(z)-f_{n}(z)\right|<\epsilon_{i}$ for all $z \in \gamma_{i}$. This implies f and f_{n} have the same number of zeros (with multiplicty) in each K_{i} by Rouche's theorem. Thus $\sigma\left(f_{n}\right) \geq 4$ for sufficiently large n, contradicting the hypothesis.
(b) We show that such a sequence exists as follows. Let $\phi(z)=\frac{z+i}{i z+1}$ be a Möbius transformation sending the unit disk to the upper half-plane; then set $f_{n}(z)=\phi(z)^{6+1 / n}$ (choosing the principal branch of the logarithm), so the sequence f_{n} converges uniformly on compacts sets to the limit function $f(z)=\phi(z)^{6}$. It is straightforward to verify that for any $\alpha>0$,

$$
\#\left(\phi^{\alpha}\right)^{-1}(w)= \begin{cases}\lceil\alpha / 2\rceil & \text { if } 0<\operatorname{Arg} w<\{\pi \alpha\} \\ \lceil\alpha / 2\rceil-1 & \text { if }\{\pi \alpha\} \leq \operatorname{Arg} w \leq 2 \pi\end{cases}
$$

where $\phi^{\alpha}(z):=\phi(z)^{\alpha}$ and we define $\{\pi \alpha\}$ to be the unique angle equivalent to $\pi \alpha$ in the range $(0,2 \pi]$, so $\sigma\left(\phi^{\alpha}\right)=\lceil\alpha / 2\rceil$. Thus $\sigma\left(f_{n}\right)=\left\lceil 3+\frac{1}{2 n}\right\rceil=4$, while $\sigma(f)=3$ as desired.
4. Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be an analytic function defined on a neighborhood of $\overline{\mathbb{D}}$ and satisfying

- $f(\overline{\mathbb{D}}) \subset \mathbb{D} ;$
- $f(0)=0$.

Let $f^{\circ n}=f \circ \cdots \circ f, n$ times. Show that $f^{\circ n}(z) \rightarrow 0$ for $z \in \mathbb{D}$.
Proof. Consider the function $g(z)=f(z) / z$. Since $f(0)=0, g$ is analytic on $\overline{\mathbb{D}}$, and on the boundary $\partial \overline{\mathbb{D}}=\{z:|z|=1\}$, the magnitudes of $f(z)$ and $g(z)$ coincide. Thus

$$
\max _{|z|=1}\{|g(z)|\}=\max _{|z|=1}\{|f(z) / z|\}=\max _{|z|=1}\{|f(z)|\} .
$$

Call this maximum λ (which exists by compactness of $\partial \overline{\mathbb{D}}$); since $f(\overline{\mathbb{D}}) \subset \mathbb{D}$ we have $0 \leq \lambda<1$. By the maximum modulus principle,

$$
|g(z)|=|f(z) / z| \leq \lambda \quad \text { for all } z \in \overline{\mathbb{D}}
$$

But this is equivalent to $|f(z)| \leq \lambda|z|$ for all $z \in \overline{\mathbb{D}}$, and by induction this implies

$$
\left|f^{\circ n}(z)\right| \leq \lambda^{n}|z| \rightarrow 0 \quad \text { as } n \rightarrow \infty, \quad(z \in \overline{\mathbb{D}} \text { fixed })
$$

so $f^{\circ n}(z) \rightarrow 0$ as desired.
5. Suppose $\left\{f_{n}\right\}$ is a uniformly bounded sequence of analytic functions on a domain Ω such that $\left\{f_{n}(z)\right\}$ converges for every $z \in \Omega$.
(a) Show that the convergence is uniform on every compact subset of Ω.
(b) Must $\left\{f_{n}^{\prime}\right\}$ converge uniformly on every compact subset of Ω ? Prove or disprove.

Proof. (a) Fix a compact subset $K \subset \Omega$. Suppose for a contradiction that the convergence $f_{n} \rightarrow f$ is not uniform on K. Then for some $\epsilon>0$, there are infinitely many f_{n} such that

$$
\sup _{z \in K}\left|f_{n}(z)-f(z)\right|>\epsilon
$$

Let $\left\{f_{n_{k}}\right\}$ consist of all such functions. Then $\left\{f_{n_{k}}\right\}$ is also uniformly bounded, so by Montel's theorem there is a subsequence $f_{n_{k_{j}}}$ that converges uniformly to some function g analytic on K, i.e.

$$
\lim _{j \rightarrow \infty}\left(\sup _{z \in K}\left|f_{n_{k_{j}}}(z)-g(z)\right|\right)=0
$$

Then $f_{n_{k_{j}}} \rightarrow g$ pointwise, and since $f_{n_{k_{j}}}$ is also a subsequence of $\left\{f_{n}\right\}$, which converges pointwise to f, we must have $g=f$. But this contradicts our assumption that

$$
\sup _{z \in K}\left|f_{n_{k_{j}}}(z)-g(z)\right|=\sup _{z \in K}\left|f_{n_{k_{j}}}(z)-f(z)\right|>\epsilon
$$

for all j, so we must have uniform convergence on K as desired.
(b) Yes; $\left\{f_{n}^{\prime}\right\}$ must converge uniformly on compact subsets as well. Indeed, for a fixed compact subset $K \subset \Omega$ we may choose an open neighborhood $K \subset \Omega_{1} \subset \Omega$ such that Ω_{1} has compact closure; let K_{1} denote this closure. Then take another open neighborhood $K_{1} \subset \Omega_{2} \subset \Omega$ with compact closure K_{2}. (We may assume Ω_{1} and Ω_{2} are connected.) Then the distance $|z-w|$ for $z \in \Omega_{1}, w \in \partial K_{2}$ is bounded below by some constant $\epsilon>0$. Moreover, the hypotheses on f_{n} gives a uniform bound $\left|f_{n}(z)\right|<M$ for all $z \in K_{2}$ and all n (where M may depend on K_{2}). By Cauchy's integral formula,

$$
f_{n}^{\prime}(z)=\frac{1}{2 \pi i} \oint_{\partial K_{2}} \frac{f_{n}(\xi)}{(\xi-z)^{2}} d \xi
$$

for any $z \in \Omega_{1}$, so taking magnitudes

$$
\left|f_{n}^{\prime}(z)\right| \leq \frac{1}{2 \pi} \oint_{\partial K_{2}} \frac{\left|f_{n}(\xi)\right|}{|\xi-z|^{2}} d \xi \leq \frac{1}{2 \pi}\left|\partial K_{2}\right| \frac{M}{\epsilon^{2}}=: M^{\prime}
$$

which shows that $\left\{f_{n}^{\prime}\right\}$ is uniformly bounded on Ω_{1}. Also by Cauchy's formula,

$$
\begin{aligned}
\left|f_{n}^{\prime}(z)-f^{\prime}(z)\right| & =\left|\frac{1}{2 \pi i} \oint_{\partial K_{2}} \frac{f_{n}(\xi)-f(\xi)}{(\xi-z)^{2}} d \xi\right| \\
& \leq \frac{1}{2 \pi}\left|\partial K_{2}\right| \frac{\sup _{K_{2}}\left|f_{n}(\xi)-f(\xi)\right|}{\epsilon^{2}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

by uniform convergence of $f_{n} \rightarrow f$, so $f_{n}^{\prime} \rightarrow f^{\prime}$ pointwise on Ω_{1}. Thus we have uniform convergence of f_{n}^{\prime} on K by the argument in (a).

