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1. Let f be a non-negative measurable function on (0, 1). Assume that there is a constant c,
such that ∫ 1

0

(f(x))ndx = c, n = 1, 2, . . . .

Show that there is a measurable set E ⊂ (0, 1) such that

f(x) = χE(x), for a.e. x ∈ (0, 1).

Proof. First we claim that f ≤ 1 almost everywhere. Indeed, if m(x : f(x) > 1) > 0 then we
could choose some ε > 0 such that m(x : f(x) ≥ 1 + ε) =: M > 0, and as n→∞∫ 1

0

(f(x))ndx ≥
∫ 1

0

(1 + ε)nχ{f(x)≥1+ε}dx = M(1 + ε)n →∞

which contradicts the hypothesis that this integral is constant as n varies.

Now define E = {x : f(x) = 1} which is measurable by assumption that f is measurable. We
claim that f = χE a.e., and c = m(E). Since f ≤ 1 a.e., the sequence {fn} is monotonically
decreasing and fn → χE pointwise a.e. By dominated convergence,

lim
n→∞

∫
(f(x))ndx =

∫
χE(x)dx = m(E)

but by hypothesis this limit is also equal to limn→∞ c = c, so c = m(E). By construction the
function f(x)− χE(x) is non-negative, and∫

(f(x)− χE(x))dx = c−m(E) = 0

so f = χE a.e., as desired.

2. Let f be locally integrable on Rn, 1 < p <∞. Show that the following are equivalent:

(i) f ∈ Lp(Rn);

(ii) there exists M > 0 such that for any finite collection of mutually disjoint measurable
sets E1, E2, . . . , Ek with 0 < m(Ei) <∞ for 1 ≤ i ≤ k,

k∑
i=1

(
1

m(Ei)

)p−1∣∣∣∣ ∫
Ei

f(x)dx

∣∣∣∣p ≤M.

Proof. (i)⇒(ii): If f ∈ Lp(Rn), then on any E with finite measure we may apply Holder’s
inequality to bound∣∣∣∣ ∫

E

f(x)dx

∣∣∣∣ ≤ ∫
E

|f(x)|dx ≤
(∫

E

|f |pdx
)1/p(∫

E

1qdx

)1/q

= (m(E))1/q
(∫

E

|f |pdx
)1/p
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where q is the conjugate of p, so in particular p/q = p− 1. Then∣∣∣∣ ∫
E

f(x)dx

∣∣∣∣p ≤ m(E)p−1
(∫

E

|f |pdx
)
,

so applying this for each Ei we have

k∑
i=1

(
1

m(Ei)

)p−1∣∣∣∣ ∫
Ei

f(x)dx

∣∣∣∣p ≤ k∑
i=1

(∫
Ei

|f(x)|pdx
)
≤ ‖f‖pp,

which is finite. Thus we may take M = ‖f‖pp.
(ii)⇒(i): We consider instead the contrapositive; if f 6∈ Lp, we claim that no finite bound M
exists in (ii). Suppose gn is a monotone increasing sequence of non-negative simple functions
that converges pointwise to |f |. By monotone convergence,

lim
n→∞

∫
gpndx =

∫
|f |pdx =∞.

But since gn is simple, say

gn(x) =

kn∑
i=1

ci,nχEi,n
(x), ci,n ∈ R>0

with Ei,n disjoint for i = 1, . . . , kn, it is straightfoward to verify that

kn∑
i=1

(
1

m(Ei,n)

)p−1∣∣∣∣ ∫
Ei,n

gn(x)dx

∣∣∣∣p =

k∑
i=1

m(Ei,n)cpi =

∫
gpndx.

Under a suitable (finite) refinement of {Ei,n}i we may assume that the values of f are either
all positive or all negative on each Ei,n, so that

kn∑
i=1

(
1

m(Ei,n)

)p−1∣∣∣∣ ∫
Ei,n

f(x)dx

∣∣∣∣p =

kn∑
i=1

(
1

m(Ei,n)

)p−1(∫
Ei,n

|f(x)|dx
)p
≥
∫
gpndx

by assumption that |f | ≥ gn. As n → ∞, the integral on the right grows without bound, so
(ii) fails as claimed.

3. Let f : R× [0, 1]→ R be a measurable function such that for any y ∈ [0, 1],∫
R
f2(x, y)dx ≤ 1.

Prove that there exists a sequence xn → +∞ such that∫ 1

0

f(xn, y)dx→ 0.
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Proof. Integrating the given inequality over y, we have∫ 1

0

(∫
R
f2(x, y)dx

)
dy ≤

∫ 1

0

1dy = 1,

and as the integrand is non-negative, we may apply Tonelli’s theorem to interchange the order
of integration: ∫

R

(∫ 1

0

f2(x, y)dy

)
dx ≤ 1.

Let xn ∈ [n, n+ 1] be chosen such that∫ 1

0

f2(xn, y)dy ≤
∫ n+1

n

(∫ 1

0

f2(x, y)dy

)
dx,

(i.e. the y-integral at xn is no larger than average on [n, n+ 1]) so

∞∑
n=1

∫ 1

0

f2(xn, y)dy ≤
∫
R

(∫ 1

0

f2(x, y)dy

)
dx ≤ 1.

The convergence of this sum implies that
∫ 1

0
f2(xn, y)dy → 0. To get the desired statement

on
∫ 1

0
f(xn, y)dy, we apply the Cauchy-Schwarz inequality:

∣∣∣∣ ∫ 1

0

f(xn, y)dy

∣∣∣∣ ≤ (∫ 1

0

f2(xn, y)dy

)1/2(∫ 1

0

12dy

)1/2

=

√∫ 1

0

f2(xn, y)dy.

It is clear by continuity of the square root function that
√
an → 0 whenever an → 0, so the

above inequality shows that
∫ 1

0
f(xn, y)dy → 0 as desired.

4. Let Ek ⊂ [a, b] be measurable sets, k ∈ N, and there exists δ > 0 such that m(Ek) ≥ δ for all
k. Assume that ak ∈ R satisfy

∞∑
k=1

|ak|χEk
(x) <∞ for a.e. x ∈ [a, b].

Show that

∞∑
k=1

|ak| <∞.

Proof. Let S(x) =
∑∞
k=1 |ak|χEk

(x), let Sn(x) =
∑n
k=1 |ak|χEk

(x) denote the partial sums,
and let Tn(x) =

∑∞
k=n+1 |ak|χEk

(x) denote the tail ends of this sum. Let F denote the set
where these sums are finite:

F = {x : S(x) <∞} = {x : Tn(x) <∞} for any n.

By definition Sn → S pointwise on F , and by hypothesis we have

m([a, b]− F ) = 0.
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If this convergence were uniform on some subset G ⊂ F , then

sup
x∈G
|S(x)− Sn(x)| = sup

x∈G
|Tn(x)| → 0 as n→∞,

so in particular supG |Tn(x)| would be finite for sufficiently large n, and thus for all n. Since
m(G) <∞ this implies Tn is integrable on G, and it follows that S is integrable as well:∫

G

S(x)dx =

∫
G

Sn(x)dx+

∫
G

Tn(x)dx <∞.

But from the definition of S as a linear combination of characteristic functions,∫
G

S(x)dx =

∞∑
k=1

|ak|m(Ek ∩G) ≥ inf
k
{m(Ek ∩G)}

∑
k

|ak|,

so to show that the sum
∑
|ak| is finite, it suffices to find a G (where Sn → S uniformly) such

that m(Ek ∩G) is bounded below by a positive constant. But this is a direct consequence of
Egorov’s theorem: for any ε > 0, we have uniform convergence on some G with m(F −G) < ε,
so m(Gc) = m([a, b]−G) = m([a, b]− F ) +m(F −G) < ε implies

m(Ek ∩G) = m(Ek −Gc) ≥ m(Ek)−m(Gc) ≥ δ − ε.

Choosing ε < δ, we have the desired result.

5. Let A,B ⊂ Rd. Assume A ∪B is measurable, and m(A ∪B) <∞. If

m(A ∪B) = m∗(A) +m∗(B),

show that A and B are measurable.

Proof. We first show that there is a measurable set U containing A such that m∗(A) = m(U).
Indeed, for any n ∈ N there is a measurable Un ⊃ A such that m(Un) ≤ m∗(A) + 1/n by
definition of outer measure. Then the intersection U = ∩nUn has the desired properties.

Similarly, let V be a measurable set containing B such that m∗(B) = m(V ). Then

m(U) +m(V ) ≥ m(U ∪ V ) ≥ m(A ∪B) = m∗(A) +m∗(B) = m(U) +m(V )

so we have the equality m(U ∪V ) = m(U) +m(V ). This implies m(U ∩V ) = 0, so the subset
A ∩ V ⊂ U ∩ V must also be measurable with measure 0. Observe that

A = (A− V ) ∪ (A ∩ V )

so it suffices to show that the set A − V is measurable. But A − V = (A ∪ B) − V since
V contains B, so as the difference of two measure sets it is measurable as well. Thus A is
measurable, and by symmetry B is also measurable.
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Analysis Qualifying Review, solutions
Afternoon session

1. Is there a function f , analytic at the origin, taking values f( 1
2n ) = f( 1

2n−1 ) = 1
2n , for n ∈ N?

Proof. No, such a function does not exist. If f(1/2n) = 1/2n for all n ∈ N, then the zeros
of the function f(z) − z would have an accumulation point at the origin, which implies that
f(z) − z = 0 identically since it is analytic at the origin. Then f(z) = z, so we cannot have
f( 1

2n−1 ) = 1/2n as desired.

2. Find and classify the singularities of the function f(z) = sin

(
1

sin(z)

)
.

Proof. Recall that sin(z) is an entire function with simple zeros at kπ for all k ∈ Z, and an
essential singularity at ∞. Therefore the function 1

sin(z) has simple poles at all kπ and a non-

isolated singularity at ∞. Now consider the composite function f(z) = sin

(
1

sin(z)

)
. At any

complex number z 6= kπ, the inside argument 1
sin(z) is a non-zero complex number so f has

no singularity at z. As z → 0, the inside argument tends to infinity ( 1
sin(z) = 1

z +O(z)→∞
as z → 0), so f has an essential singularity at 0. Since f satisfies the periodic relation

f(z + π) = sin

(
1

sin(z + π)

)
= sin

(
1

− sin(z)

)
= −f(z)

the same argument shows that f has an essential singularity at each kπ.

3. Let f be an entire function such that f(z) ∈ R whenever z ∈ R. Assume that |f(z)| ≤ 1 on
the boundary of the rectangle with the vertices −1, 1, 1 + i,−1 + i. Prove that |f ′( i

10 )| ≤ 10
9 .

Proof. By the maximum modulus principle, the bound |f(z)| ≤ 1 holds for all z inside the
given rectangle, which we denote R1. By Schwarz reflection, the values of f on the reflection
R1 of R1 across the real axis are given by f(z̄) = f(z). In particular, the modulus is the same
after reflection, |f(z̄)| = |f(z)|, so the bound |f(z)| ≤ 1 holds in the “doubled” rectangle
R2 = R1 ∪R+ 1 with vertices at {±1± i}.
This shows that the restriction of f to the closed unit disk D ⊂ R2 must have image inside
D, so we may apply the Schwarz-Pick bound∣∣∣∣f ′( i

10

)∣∣∣∣ ≤ 1− |f(i/10)|2

1− |i/10|2
≤ 1

1− 1/100
=

100

99

This in particular implies the weaker bound |f ′(i/10)| ≤ 10
9 .

4. Suppose Ω is a bounded region, f is holomorphic on Ω and

lim sup
n→∞

|f(zn)| ≤M

for every sequence zn in Ω which converges to a boundary point of Ω. Prove that |f(z)| ≤M
for all z ∈ Ω.
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Proof. Recall that every region Ω ⊂ C admits an exhaustion {Kn}, namely a nested sequence
of compact sets K1 ⊂ K2 ⊂ · · · ⊂ Ω whose union is all of Ω. In this case, where Ω is bounded,
we may define Kn as

Kn = {x ∈ Ω : d(x, ∂Ω) ≥ 1

n
}.

On each Kn define
Mn = sup

z∈Kn

|f(z)|.

By compactness this supremum is achieved for some zn ∈ Kn, and by the maximum modulus
principle zn can be chosen to lie on the boundary of Kn. (It must lie on the boundary unless
f is (locally) constant.) Since Ω is bounded, the sequence {zn} must have some convergent
subsequence, which we denote {znk

}. This subsequence must converge to a point in the closure
of Ω, but it cannot converge to a point in the interior because any interior point is also in the
interior of Kn for sufficiently large n. Thus {znk

} converges to a boundary point of Ω, so

lim sup
k→∞

|f(znk
)| = lim sup

k→∞
Mnk

≤M

by hypothesis. But the sequence M1 ≤ M2 ≤ · · · in non-decreasing since the Kn are nested,
so supn{Mn} ≤M which implies that |f(z)| ≤M for any z ∈ ∪nKn = Ω as desired.

5. Let f ∈ C1(R) be a function with compact support.

(a) Show that for any x ∈ R,

p.v.

∫ ∞
−∞

f(ζ)

ζ − x
dζ := lim

ε→0

∫
|ζ−x|>ε

f(ζ)

ζ − x
dζ exists.

(b) Prove that

lim
y→0+

1

2πi

∫ ∞
−∞

f(ζ)

ζ − (x+ iy)
dζ =

1

2
f(x) +

1

2πi
· p.v.

∫ ∞
−∞

f(ζ)

ζ − x
dζ.

Proof. (a) Observe that∫
|ζ−x|>ε

f(ζ)

ζ − x
dζ =

∫
|ζ−x|≥1

f(ζ)

ζ − x
dζ +

∫
1>|ζ−x|>ε

f(ζ)− f(x)

ζ − x
dζ +

∫
1>|ζ−x|>ε

f(x)

ζ − x
dζ

The first integral converges since the f has compact support, and the third integral
vanishes for any ε by symmetry of 1

ζ−x . Thus it suffices to show that the second integral
approaches a limit as ε→ 0; we claim in fact

lim
ε→0

∫
1>|ζ−x|>ε

f(ζ)− f(x)

ζ − x
dζ =

∫ x−1

x−1

f(ζ)− f(x)

ζ − x
dζ exists.

By assumption f is differentiable at x, so the limit

f ′(x) = lim
ζ→x

f(ζ)− f(x)

ζ − x
exists.
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Thus for any δ1 > 0 there is a δ2 > 0 such that |f ′(x) − f(ζ)−f(x)
ζ−x | < δ1 for any ζ

satisfying |ζ − x| < δ2. In particular, | f(ζ)−f(x)ζ−x | < |f ′(x)| + δ1 must be bounded on

the interval ζ ∈ (x − δ2, x + δ2), and it is bounded by continuity on the compact set
ζ ∈ [x− 1, x− δ2] ∪ [x+ δ2, x+ 1].

(b) Observe ∫ ∞
−∞

f(ζ)

ζ − (x+ iy)
dζ =

∫ ∞
−∞

f(ζ)(ζ − x+ iy)

(ζ − x)2 + y2
dζ

=

∫ ∞
−∞

f(ζ)(ζ − x)

(ζ − x)2 + y2
dζ + iy

∫ ∞
−∞

f(ζ)

(ζ − x)2 + y2
dζ

It is clear by dominated convergence that for any fixed ε > 0,

lim
y→0+

∫
|ζ−x|>ε

f(ζ)(ζ − x)

(ζ − x)2 + y2
dζ =

∫
|ζ−x|>ε

f(ζ)

ζ − x
dζ.

To get bounds on the remaining part, let δε = sup
|h|≤ε

∣∣∣∣f(x+ h)− f(x)

h
− f ′(x)

∣∣∣∣ so that

|f(x+ h)− f(x)− f ′(x)h| ≤ δε|h| for all |h| < ε:

lim
y→0+

∣∣∣∣ ∫
|ζ−x|≤ε

f(ζ)(ζ − x)

(ζ − x)2 + y2
dζ

∣∣∣∣ = lim
y→0+

∣∣∣∣ ∫
|ζ−x|≤ε

f(x)(ζ − x)

(ζ − x)2 + y2
dζ +

∫
|ζ−x|≤ε

(f(ζ)− f(x))(ζ − x)

(ζ − x)2 + y2
dζ

∣∣∣∣
≤ lim
y→0+

∣∣∣∣f(x)

∫
|ζ−x|≤ε

(ζ − x)

(ζ − x)2 + y2
dζ

∣∣∣∣
+ lim
y→0+

∣∣∣∣ ∫
|ζ−x|≤ε

f ′(x)(ζ − x)2

(ζ − x)2 + y2
dζ

∣∣∣∣+ lim
y→0+

∣∣∣∣ ∫
|ζ−x|≤ε

δε(ζ − x)2

(ζ − x)2 + y2
dζ

∣∣∣∣
= 0 + 2εf ′(x) + 2εδε

by symmetry of the first integral and by bounded convergence of the second and third.
As ε→ 0, it is clear that δε decreases to 0 by definition of the derivative (since f ∈ C1).
Taking the above two results together, as ε→ 0, we have

lim
y→0+

∫ ∞
−∞

f(ζ)(ζ − x)

(ζ − x)2 + y2
dζ = lim

ε→0

(∫
|ζ−x|>ε

f(ζ)

ζ − x
dζ +O(ε)

)
= p.v.

∫ ∞
−∞

f(ζ)

ζ − x
dζ.

Now consider the remaining term:

lim
y→0+

iy

∫ ∞
−∞

f(ζ)

(ζ − x)2 + y2
dζ = lim

y→0+

i

y

∫ ∞
−∞

f(ζ)

( ζ−xy )2 + 1
dζ

= lim
y→0+

i

∫ ∞
−∞

f(x+ yξ)

ξ2 + 1
dξ

= i

∫ ∞
−∞

f(x)

ξ2 + 1
dξ = iπf(x).

The claim follows.
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(To justify the last line in the above equation, we may check for any R > 0 that

lim
y→0+

∣∣∣∣ ∫ R

−R

f(x+ yξ)− f(x)

ξ2 + 1
dξ

∣∣∣∣ ≤ lim
y→0+

∫ R

−R

|f(x+ yξ)− f(x)|
ξ2 + 1

dξ

≤ lim
y→0+

(
sup
|δ|<yR

|f(x+ δ)− f(x)|
)∫ R

−R

1

ξ2 + 1
dξ

= 0

by continuity of f . It also follows by dominated convergence under sup |f |
ξ2+1 .)
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