Analysis Qualifying Review, solutions Morning session

1. Let f be a non-negative measurable function on $(0,1)$. Assume that there is a constant c, such that

$$
\int_{0}^{1}(f(x))^{n} d x=c, \quad n=1,2, \ldots
$$

Show that there is a measurable set $E \subset(0,1)$ such that

$$
f(x)=\chi_{E}(x), \quad \text { for a.e. } x \in(0,1)
$$

Proof. First we claim that $f \leq 1$ almost everywhere. Indeed, if $m(x: f(x)>1)>0$ then we could choose some $\epsilon>0$ such that $m(x: f(x) \geq 1+\epsilon)=: M>0$, and as $n \rightarrow \infty$

$$
\int_{0}^{1}(f(x))^{n} d x \geq \int_{0}^{1}(1+\epsilon)^{n} \chi_{\{f(x) \geq 1+\epsilon\}} d x=M(1+\epsilon)^{n} \rightarrow \infty
$$

which contradicts the hypothesis that this integral is constant as n varies.
Now define $E=\{x: f(x)=1\}$ which is measurable by assumption that f is measurable. We claim that $f=\chi_{E}$ a.e., and $c=m(E)$. Since $f \leq 1$ a.e., the sequence $\left\{f^{n}\right\}$ is monotonically decreasing and $f^{n} \rightarrow \chi_{E}$ pointwise a.e. By dominated convergence,

$$
\lim _{n \rightarrow \infty} \int(f(x))^{n} d x=\int \chi_{E}(x) d x=m(E)
$$

but by hypothesis this limit is also equal to $\lim _{n \rightarrow \infty} c=c$, so $c=m(E)$. By construction the function $f(x)-\chi_{E}(x)$ is non-negative, and

$$
\int\left(f(x)-\chi_{E}(x)\right) d x=c-m(E)=0
$$

so $f=\chi_{E}$ a.e., as desired.
2. Let f be locally integrable on $\mathbb{R}^{n}, 1<p<\infty$. Show that the following are equivalent:
(i) $f \in L^{p}\left(\mathbb{R}^{n}\right)$;
(ii) there exists $M>0$ such that for any finite collection of mutually disjoint measurable sets $E_{1}, E_{2}, \ldots, E_{k}$ with $0<m\left(E_{i}\right)<\infty$ for $1 \leq i \leq k$,

$$
\sum_{i=1}^{k}\left(\frac{1}{m\left(E_{i}\right)}\right)^{p-1}\left|\int_{E_{i}} f(x) d x\right|^{p} \leq M
$$

Proof. (i) \Rightarrow (ii): If $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then on any E with finite measure we may apply Holder's inequality to bound

$$
\begin{aligned}
\left|\int_{E} f(x) d x\right| \leq \int_{E}|f(x)| d x & \leq\left(\int_{E}|f|^{p} d x\right)^{1 / p}\left(\int_{E} 1^{q} d x\right)^{1 / q} \\
& =(m(E))^{1 / q}\left(\int_{E}|f|^{p} d x\right)^{1 / p}
\end{aligned}
$$

where q is the conjugate of p, so in particular $p / q=p-1$. Then

$$
\left|\int_{E} f(x) d x\right|^{p} \leq m(E)^{p-1}\left(\int_{E}|f|^{p} d x\right)
$$

so applying this for each E_{i} we have

$$
\sum_{i=1}^{k}\left(\frac{1}{m\left(E_{i}\right)}\right)^{p-1}\left|\int_{E_{i}} f(x) d x\right|^{p} \leq \sum_{i=1}^{k}\left(\int_{E_{i}}|f(x)|^{p} d x\right) \leq\|f\|_{p}^{p}
$$

which is finite. Thus we may take $M=\|f\|_{p}^{p}$.
(ii) \Rightarrow (i): We consider instead the contrapositive; if $f \notin L^{p}$, we claim that no finite bound M exists in (ii). Suppose g_{n} is a monotone increasing sequence of non-negative simple functions that converges pointwise to $|f|$. By monotone convergence,

$$
\lim _{n \rightarrow \infty} \int g_{n}^{p} d x=\int|f|^{p} d x=\infty
$$

But since g_{n} is simple, say

$$
g_{n}(x)=\sum_{i=1}^{k_{n}} c_{i, n} \chi_{E_{i, n}}(x), \quad c_{i, n} \in \mathbb{R}_{>0}
$$

with $E_{i, n}$ disjoint for $i=1, \ldots, k_{n}$, it is straightfoward to verify that

$$
\sum_{i=1}^{k_{n}}\left(\frac{1}{m\left(E_{i, n}\right)}\right)^{p-1}\left|\int_{E_{i, n}} g_{n}(x) d x\right|^{p}=\sum_{i=1}^{k} m\left(E_{i, n}\right) c_{i}^{p}=\int g_{n}^{p} d x
$$

Under a suitable (finite) refinement of $\left\{E_{i, n}\right\}_{i}$ we may assume that the values of f are either all positive or all negative on each $E_{i, n}$, so that

$$
\sum_{i=1}^{k_{n}}\left(\frac{1}{m\left(E_{i, n}\right)}\right)^{p-1}\left|\int_{E_{i, n}} f(x) d x\right|^{p}=\sum_{i=1}^{k_{n}}\left(\frac{1}{m\left(E_{i, n}\right)}\right)^{p-1}\left(\int_{E_{i, n}}|f(x)| d x\right)^{p} \geq \int g_{n}^{p} d x
$$

by assumption that $|f| \geq g_{n}$. As $n \rightarrow \infty$, the integral on the right grows without bound, so (ii) fails as claimed.
3. Let $f: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ be a measurable function such that for any $y \in[0,1]$,

$$
\int_{\mathbb{R}} f^{2}(x, y) d x \leq 1
$$

Prove that there exists a sequence $x_{n} \rightarrow+\infty$ such that

$$
\int_{0}^{1} f\left(x_{n}, y\right) d x \rightarrow 0
$$

Proof. Integrating the given inequality over y, we have

$$
\int_{0}^{1}\left(\int_{\mathbb{R}} f^{2}(x, y) d x\right) d y \leq \int_{0}^{1} 1 d y=1
$$

and as the integrand is non-negative, we may apply Tonelli's theorem to interchange the order of integration:

$$
\int_{\mathbb{R}}\left(\int_{0}^{1} f^{2}(x, y) d y\right) d x \leq 1
$$

Let $x_{n} \in[n, n+1]$ be chosen such that

$$
\int_{0}^{1} f^{2}\left(x_{n}, y\right) d y \leq \int_{n}^{n+1}\left(\int_{0}^{1} f^{2}(x, y) d y\right) d x
$$

(i.e. the y-integral at x_{n} is no larger than average on $[n, n+1]$) so

$$
\sum_{n=1}^{\infty} \int_{0}^{1} f^{2}\left(x_{n}, y\right) d y \leq \int_{\mathbb{R}}\left(\int_{0}^{1} f^{2}(x, y) d y\right) d x \leq 1
$$

The convergence of this sum implies that $\int_{0}^{1} f^{2}\left(x_{n}, y\right) d y \rightarrow 0$. To get the desired statement on $\int_{0}^{1} f\left(x_{n}, y\right) d y$, we apply the Cauchy-Schwarz inequality:

$$
\left|\int_{0}^{1} f\left(x_{n}, y\right) d y\right| \leq\left(\int_{0}^{1} f^{2}\left(x_{n}, y\right) d y\right)^{1 / 2}\left(\int_{0}^{1} 1^{2} d y\right)^{1 / 2}=\sqrt{\int_{0}^{1} f^{2}\left(x_{n}, y\right) d y}
$$

It is clear by continuity of the square root function that $\sqrt{a_{n}} \rightarrow 0$ whenever $a_{n} \rightarrow 0$, so the above inequality shows that $\int_{0}^{1} f\left(x_{n}, y\right) d y \rightarrow 0$ as desired.
4. Let $E_{k} \subset[a, b]$ be measurable sets, $k \in \mathbb{N}$, and there exists $\delta>0$ such that $m\left(E_{k}\right) \geq \delta$ for all k. Assume that $a_{k} \in \mathbb{R}$ satisfy

$$
\sum_{k=1}^{\infty}\left|a_{k}\right| \chi_{E_{k}}(x)<\infty \quad \text { for a.e. } x \in[a, b]
$$

Show that $\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$.
Proof. Let $S(x)=\sum_{k=1}^{\infty}\left|a_{k}\right| \chi_{E_{k}}(x)$, let $S_{n}(x)=\sum_{k=1}^{n}\left|a_{k}\right| \chi_{E_{k}}(x)$ denote the partial sums, and let $T_{n}(x)=\sum_{k=n+1}^{\infty}\left|a_{k}\right| \chi_{E_{k}}(x)$ denote the tail ends of this sum. Let F denote the set where these sums are finite:

$$
F=\{x: S(x)<\infty\}=\left\{x: T_{n}(x)<\infty\right\} \quad \text { for any } n
$$

By definition $S_{n} \rightarrow S$ pointwise on F, and by hypothesis we have

$$
m([a, b]-F)=0
$$

If this convergence were uniform on some subset $G \subset F$, then

$$
\sup _{x \in G}\left|S(x)-S_{n}(x)\right|=\sup _{x \in G}\left|T_{n}(x)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

so in particular $\sup _{G}\left|T_{n}(x)\right|$ would be finite for sufficiently large n, and thus for all n. Since $m(G)<\infty$ this implies T_{n} is integrable on G, and it follows that S is integrable as well:

$$
\int_{G} S(x) d x=\int_{G} S_{n}(x) d x+\int_{G} T_{n}(x) d x<\infty .
$$

But from the definition of S as a linear combination of characteristic functions,

$$
\int_{G} S(x) d x=\sum_{k=1}^{\infty}\left|a_{k}\right| m\left(E_{k} \cap G\right) \geq \inf _{k}\left\{m\left(E_{k} \cap G\right)\right\} \sum_{k}\left|a_{k}\right|
$$

so to show that the sum $\sum\left|a_{k}\right|$ is finite, it suffices to find a G (where $S_{n} \rightarrow S$ uniformly) such that $m\left(E_{k} \cap G\right)$ is bounded below by a positive constant. But this is a direct consequence of Egorov's theorem: for any $\epsilon>0$, we have uniform convergence on some G with $m(F-G)<\epsilon$, so $m\left(G^{c}\right)=m([a, b]-G)=m([a, b]-F)+m(F-G)<\epsilon$ implies

$$
m\left(E_{k} \cap G\right)=m\left(E_{k}-G^{c}\right) \geq m\left(E_{k}\right)-m\left(G^{c}\right) \geq \delta-\epsilon
$$

Choosing $\epsilon<\delta$, we have the desired result.
5. Let $A, B \subset \mathbb{R}^{d}$. Assume $A \cup B$ is measurable, and $m(A \cup B)<\infty$. If

$$
m(A \cup B)=m^{*}(A)+m^{*}(B)
$$

show that A and B are measurable.
Proof. We first show that there is a measurable set U containing A such that $m^{*}(A)=m(U)$. Indeed, for any $n \in \mathbb{N}$ there is a measurable $U_{n} \supset A$ such that $m\left(U_{n}\right) \leq m^{*}(A)+1 / n$ by definition of outer measure. Then the intersection $U=\cap_{n} U_{n}$ has the desired properties.
Similarly, let V be a measurable set containing B such that $m^{*}(B)=m(V)$. Then

$$
m(U)+m(V) \geq m(U \cup V) \geq m(A \cup B)=m^{*}(A)+m^{*}(B)=m(U)+m(V)
$$

so we have the equality $m(U \cup V)=m(U)+m(V)$. This implies $m(U \cap V)=0$, so the subset $A \cap V \subset U \cap V$ must also be measurable with measure 0 . Observe that

$$
A=(A-V) \cup(A \cap V)
$$

so it suffices to show that the set $A-V$ is measurable. But $A-V=(A \cup B)-V$ since V contains B, so as the difference of two measure sets it is measurable as well. Thus A is measurable, and by symmetry B is also measurable.

Analysis Qualifying Review, solutions

Afternoon session

1. Is there a function f, analytic at the origin, taking values $f\left(\frac{1}{2 n}\right)=f\left(\frac{1}{2 n-1}\right)=\frac{1}{2 n}$, for $n \in \mathbb{N}$?

Proof. No, such a function does not exist. If $f(1 / 2 n)=1 / 2 n$ for all $n \in \mathbb{N}$, then the zeros of the function $f(z)-z$ would have an accumulation point at the origin, which implies that $f(z)-z=0$ identically since it is analytic at the origin. Then $f(z)=z$, so we cannot have $f\left(\frac{1}{2 n-1}\right)=1 / 2 n$ as desired.
2. Find and classify the singularities of the function $f(z)=\sin \left(\frac{1}{\sin (z)}\right)$.

Proof. Recall that $\sin (z)$ is an entire function with simple zeros at $k \pi$ for all $k \in \mathbb{Z}$, and an essential singularity at ∞. Therefore the function $\frac{1}{\sin (z)}$ has simple poles at all $k \pi$ and a nonisolated singularity at ∞. Now consider the composite function $f(z)=\sin \left(\frac{1}{\sin (z)}\right)$. At any complex number $z \neq k \pi$, the inside $\operatorname{argument} \frac{1}{\sin (z)}$ is a non-zero complex number so f has no singularity at z. As $z \rightarrow 0$, the inside argument tends to infinity $\left(\frac{1}{\sin (z)}=\frac{1}{z}+O(z) \rightarrow \infty\right.$ as $z \rightarrow 0$), so f has an essential singularity at 0 . Since f satisfies the periodic relation

$$
f(z+\pi)=\sin \left(\frac{1}{\sin (z+\pi)}\right)=\sin \left(\frac{1}{-\sin (z)}\right)=-f(z)
$$

the same argument shows that f has an essential singularity at each $k \pi$.
3. Let f be an entire function such that $f(z) \in \mathbb{R}$ whenever $z \in \mathbb{R}$. Assume that $|f(z)| \leq 1$ on the boundary of the rectangle with the vertices $-1,1,1+i,-1+i$. Prove that $\left|f^{\prime}\left(\frac{i}{10}\right)\right| \leq \frac{10}{9}$.

Proof. By the maximum modulus principle, the bound $|f(z)| \leq 1$ holds for all z inside the given rectangle, which we denote R_{1}. By Schwarz reflection, the values of f on the reflection $\overline{R_{1}}$ of R_{1} across the real axis are given by $f(\bar{z})=\overline{f(z)}$. In particular, the modulus is the same after reflection, $|f(\bar{z})|=|f(z)|$, so the bound $|f(z)| \leq 1$ holds in the "doubled" rectangle $R_{2}=R_{1} \cup \overline{R+1}$ with vertices at $\{ \pm 1 \pm i\}$.
This shows that the restriction of f to the closed unit disk $\mathbb{D} \subset R_{2}$ must have image inside \mathbb{D}, so we may apply the Schwarz-Pick bound

$$
\left|f^{\prime}\left(\frac{i}{10}\right)\right| \leq \frac{1-|f(i / 10)|^{2}}{1-|i / 10|^{2}} \leq \frac{1}{1-1 / 100}=\frac{100}{99}
$$

This in particular implies the weaker bound $\left|f^{\prime}(i / 10)\right| \leq \frac{10}{9}$.
4. Suppose Ω is a bounded region, f is holomorphic on Ω and

$$
\limsup _{n \rightarrow \infty}\left|f\left(z_{n}\right)\right| \leq M
$$

for every sequence z_{n} in Ω which converges to a boundary point of Ω. Prove that $|f(z)| \leq M$ for all $z \in \Omega$.

Proof. Recall that every region $\Omega \subset \mathbb{C}$ admits an exhaustion $\left\{K_{n}\right\}$, namely a nested sequence of compact sets $K_{1} \subset K_{2} \subset \cdots \subset \Omega$ whose union is all of Ω. In this case, where Ω is bounded, we may define K_{n} as

$$
K_{n}=\left\{x \in \Omega: d(x, \partial \Omega) \geq \frac{1}{n}\right\}
$$

On each K_{n} define

$$
M_{n}=\sup _{z \in K_{n}}|f(z)|
$$

By compactness this supremum is achieved for some $z_{n} \in K_{n}$, and by the maximum modulus principle z_{n} can be chosen to lie on the boundary of K_{n}. (It must lie on the boundary unless f is (locally) constant.) Since Ω is bounded, the sequence $\left\{z_{n}\right\}$ must have some convergent subsequence, which we denote $\left\{z_{n_{k}}\right\}$. This subsequence must converge to a point in the closure of Ω, but it cannot converge to a point in the interior because any interior point is also in the interior of K_{n} for sufficiently large n. Thus $\left\{z_{n_{k}}\right\}$ converges to a boundary point of Ω, so

$$
\limsup _{k \rightarrow \infty}\left|f\left(z_{n_{k}}\right)\right|=\limsup _{k \rightarrow \infty} M_{n_{k}} \leq M
$$

by hypothesis. But the sequence $M_{1} \leq M_{2} \leq \cdots$ in non-decreasing since the K_{n} are nested, so $\sup _{n}\left\{M_{n}\right\} \leq M$ which implies that $|f(z)| \leq M$ for any $z \in \cup_{n} K_{n}=\Omega$ as desired.
5. Let $f \in C^{1}(\mathbb{R})$ be a function with compact support.
(a) Show that for any $x \in \mathbb{R}$,

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{f(\zeta)}{\zeta-x} d \zeta:=\lim _{\epsilon \rightarrow 0} \int_{|\zeta-x|>\epsilon} \frac{f(\zeta)}{\zeta-x} d \zeta \quad \text { exists. }
$$

(b) Prove that

$$
\lim _{y \rightarrow 0^{+}} \frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{f(\zeta)}{\zeta-(x+i y)} d \zeta=\frac{1}{2} f(x)+\frac{1}{2 \pi i} \cdot \text { p.v. } \int_{-\infty}^{\infty} \frac{f(\zeta)}{\zeta-x} d \zeta .
$$

Proof. (a) Observe that

$$
\int_{|\zeta-x|>\epsilon} \frac{f(\zeta)}{\zeta-x} d \zeta=\int_{|\zeta-x| \geq 1} \frac{f(\zeta)}{\zeta-x} d \zeta+\int_{1>|\zeta-x|>\epsilon} \frac{f(\zeta)-f(x)}{\zeta-x} d \zeta+\int_{1>|\zeta-x|>\epsilon} \frac{f(x)}{\zeta-x} d \zeta
$$

The first integral converges since the f has compact support, and the third integral vanishes for any ϵ by symmetry of $\frac{1}{\zeta-x}$. Thus it suffices to show that the second integral approaches a limit as $\epsilon \rightarrow 0$; we claim in fact

$$
\lim _{\epsilon \rightarrow 0} \int_{1>|\zeta-x|>\epsilon} \frac{f(\zeta)-f(x)}{\zeta-x} d \zeta=\int_{x-1}^{x-1} \frac{f(\zeta)-f(x)}{\zeta-x} d \zeta \quad \text { exists. }
$$

By assumption f is differentiable at x, so the limit

$$
f^{\prime}(x)=\lim _{\zeta \rightarrow x} \frac{f(\zeta)-f(x)}{\zeta-x} \quad \text { exists. }
$$

Thus for any $\delta_{1}>0$ there is a $\delta_{2}>0$ such that $\left|f^{\prime}(x)-\frac{f(\zeta)-f(x)}{\zeta-x}\right|<\delta_{1}$ for any ζ satisfying $|\zeta-x|<\delta_{2}$. In particular, $\left|\frac{f(\zeta)-f(x)}{\zeta-x}\right|<\left|f^{\prime}(x)\right|+\delta_{1}$ must be bounded on the interval $\zeta \in\left(x-\delta_{2}, x+\delta_{2}\right)$, and it is bounded by continuity on the compact set $\zeta \in\left[x-1, x-\delta_{2}\right] \cup\left[x+\delta_{2}, x+1\right]$.
(b) Observe

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{f(\zeta)}{\zeta-(x+i y)} d \zeta & =\int_{-\infty}^{\infty} \frac{f(\zeta)(\zeta-x+i y)}{(\zeta-x)^{2}+y^{2}} d \zeta \\
& =\int_{-\infty}^{\infty} \frac{f(\zeta)(\zeta-x)}{(\zeta-x)^{2}+y^{2}} d \zeta+i y \int_{-\infty}^{\infty} \frac{f(\zeta)}{(\zeta-x)^{2}+y^{2}} d \zeta
\end{aligned}
$$

It is clear by dominated convergence that for any fixed $\epsilon>0$,

$$
\lim _{y \rightarrow 0^{+}} \int_{|\zeta-x|>\epsilon} \frac{f(\zeta)(\zeta-x)}{(\zeta-x)^{2}+y^{2}} d \zeta=\int_{|\zeta-x|>\epsilon} \frac{f(\zeta)}{\zeta-x} d \zeta
$$

To get bounds on the remaining part, let $\delta_{\epsilon}=\sup _{|h| \leq \epsilon}\left|\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)\right|$ so that $\left|f(x+h)-f(x)-f^{\prime}(x) h\right| \leq \delta_{\epsilon}|h|$ for all $|h|<\epsilon$:

$$
\begin{aligned}
\lim _{y \rightarrow 0^{+}}\left|\int_{|\zeta-x| \leq \epsilon} \frac{f(\zeta)(\zeta-x)}{(\zeta-x)^{2}+y^{2}} d \zeta\right|= & \lim _{y \rightarrow 0^{+}}\left|\int_{|\zeta-x| \leq \epsilon} \frac{f(x)(\zeta-x)}{(\zeta-x)^{2}+y^{2}} d \zeta+\int_{|\zeta-x| \leq \epsilon} \frac{(f(\zeta)-f(x))(\zeta-x)}{(\zeta-x)^{2}+y^{2}} d \zeta\right| \\
\leq & \lim _{y \rightarrow 0^{+}}\left|f(x) \int_{|\zeta-x| \leq \epsilon} \frac{(\zeta-x)}{(\zeta-x)^{2}+y^{2}} d \zeta\right| \\
& +\lim _{y \rightarrow 0^{+}}\left|\int_{|\zeta-x| \leq \epsilon} \frac{f^{\prime}(x)(\zeta-x)^{2}}{(\zeta-x)^{2}+y^{2}} d \zeta\right|+\lim _{y \rightarrow 0^{+}}\left|\int_{|\zeta-x| \leq \epsilon} \frac{\delta_{\epsilon}(\zeta-x)^{2}}{(\zeta-x)^{2}+y^{2}} d \zeta\right| \\
= & 0+2 \epsilon f^{\prime}(x)+2 \epsilon \delta_{\epsilon}
\end{aligned}
$$

by symmetry of the first integral and by bounded convergence of the second and third. As $\epsilon \rightarrow 0$, it is clear that δ_{ϵ} decreases to 0 by definition of the derivative (since $f \in C^{1}$).
Taking the above two results together, as $\epsilon \rightarrow 0$, we have

$$
\lim _{y \rightarrow 0^{+}} \int_{-\infty}^{\infty} \frac{f(\zeta)(\zeta-x)}{(\zeta-x)^{2}+y^{2}} d \zeta=\lim _{\epsilon \rightarrow 0}\left(\int_{|\zeta-x|>\epsilon} \frac{f(\zeta)}{\zeta-x} d \zeta+O(\epsilon)\right)=\text { p.v. } \int_{-\infty}^{\infty} \frac{f(\zeta)}{\zeta-x} d \zeta
$$

Now consider the remaining term:

$$
\begin{aligned}
\lim _{y \rightarrow 0^{+}} i y \int_{-\infty}^{\infty} \frac{f(\zeta)}{(\zeta-x)^{2}+y^{2}} d \zeta & =\lim _{y \rightarrow 0^{+}} \frac{i}{y} \int_{-\infty}^{\infty} \frac{f(\zeta)}{\left(\frac{\zeta-x}{y}\right)^{2}+1} d \zeta \\
& =\lim _{y \rightarrow 0^{+}} i \int_{-\infty}^{\infty} \frac{f(x+y \xi)}{\xi^{2}+1} d \xi \\
& =i \int_{-\infty}^{\infty} \frac{f(x)}{\xi^{2}+1} d \xi=i \pi f(x)
\end{aligned}
$$

The claim follows.
(To justify the last line in the above equation, we may check for any $R>0$ that

$$
\begin{aligned}
\lim _{y \rightarrow 0^{+}}\left|\int_{-R}^{R} \frac{f(x+y \xi)-f(x)}{\xi^{2}+1} d \xi\right| & \leq \lim _{y \rightarrow 0^{+}} \int_{-R}^{R} \frac{|f(x+y \xi)-f(x)|}{\xi^{2}+1} d \xi \\
& \leq \lim _{y \rightarrow 0^{+}}\left(\sup _{|\delta|<y R}|f(x+\delta)-f(x)|\right) \int_{-R}^{R} \frac{1}{\xi^{2}+1} d \xi \\
& =0
\end{aligned}
$$

by continuity of f. It also follows by dominated convergence under $\frac{\sup |f|}{\xi^{2}+1}$.)

