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1. Construct a measurable subset A of (0, 1) such that m(A) < 1 and m(A ∩ (a, b)) > 0 for any
(a, b) ⊂ (0, 1).

Proof. Let {qn} = {q1, q2, . . .} be an enumeration of the rational numbers in the interval
(0, 1), and let En be the open interval

En = (qn − 5−n, qn + 5−n) ∩ (0, 1).

Then A = ∪nEn ⊂ (0, 1) is measurable, as a countable union of measurable sets, and

m(A) ≤
∑
n≥1

m(En) ≤
∑
n≥1

2 · 5−n = 1/2.

Finally any open interval (a, b) ⊂ (0, 1) contains some rational qn, so the intersection En∩(a, b)
has positive measure and thus m(A ∩ (a, b)) is positive as well. Thus A satisfies the specified
conditions.

2. Let {fk(x)} be a sequence of non-negative measurable functions on E and m(E) <∞. Show
that {fk(x)} converges in measure to 0 if and only if

lim
k→∞

∫
E

fk(x)

1 + fk(x)
dx = 0.

Proof. (⇒): Suppose fk → 0 in measure, meaning that for any ε > 0

m(x : |fk(x)| ≥ ε)→ 0 as k →∞.

Then since y 7→ y
1+y : R≥0 → [0, 1) is monotonically increasing,∫
E

fk(x)

1 + fk(x)
dx =

∫
|fk|<ε

fk(x)

1 + fk(x)
dx+

∫
|fk|≥ε

fk(x)

1 + fk(x)
dx

≤
∫
|fk|<ε

ε

1 + ε
dx+

∫
|fk|≥ε

1dx

≤ m(E)
ε

1 + ε
+m(|fk| ≥ ε).

Taking k →∞, we see that lim
k→∞

∫
E

fk(x)

1 + fk(x)
dx ≤ m(E)

ε

1 + ε
, and as ε→ 0 this bound goes

to zero, so the limit is zero as claimed.

(⇐): Observe that for any ε > 0,∫
E

fk(x)

1 + fk(x)
dx =

∫
|fk|≥ε

fk(x)

1 + fk(x)
dx+

∫
|fk|<ε

fk(x)

1 + fk(x)
dx

≥
∫
|fk|≥ε

ε

1 + ε
dx

= m(|fk| ≥ ε)
ε

1 + ε
≥ 0.
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If the given sequence of integrals converges to zero, then (ignoring the non-zero constant factor
ε

1+ε )
lim
k→∞

m(x : |fk(x)| ≥ ε) = 0

as well. Thus fk → 0 in measure.

3. Let 1 ≤ p <∞, f ∈ Lp(Rn). Let

f∗(λ) = m({x : |f(x)| > λ}), λ > 0.

Show that

(a) p
∫∞
0
λp−1f∗(λ)dλ =

∫
|f(x)|pdx

(b) lim
λ→∞

λpf∗(λ) = 0, lim
λ→0

λpf∗(λ) = 0.

Proof. (a) Suppose g =
∑
k ckχEk

is a simple function in Lp(Rn), where {Ek} are disjoint.
Then

g∗(λ) =
∑
k s.t.
|ck|>λ

m(Ek) =
∑
k

m(Ek)χ[0,|ck|)(λ),

and ∫
|g|pdx =

∑
k

m(Ek)|ck|p =
∑
k

m(Ek)

(∫ |ck|
0

pλp−1dλ

)
=
∑
k

m(Ek)

(∫ ∞
0

pλp−1χ[0,|ck|)dλ

)
=

∫ ∞
0

pλp−1
(∑

k

m(Ek)χ[0,|ck|)

)
dλ =

∫ ∞
0

pλp−1g∗(λ)dλ.

Thus the desired equality holds for simple functions. For an arbitrary f ∈ Lp(Rn),
we may find a monotonically increasing sequence of simple functions gn that converge
pointwise to |f |, so that ‖gn‖p → ‖f‖p by monotone convergence. Under these conditions
gn ≤ f ,

{x : |gn(x)| > λ} ⊂ {x : |f(x)| > λ} ⇒ (gn)∗(λ) ≤ f∗(λ)

for all λ, so the sequence λp−1(gn)∗ will also converge monotonically to λp−1f∗. By
monotone convergence in L1(R), ‖pλp−1(gn)∗‖1 → ‖pλp−1f∗‖1. Thus∫
|f(x)|pdx = lim

n→∞

∫
|gn(x)|pdx = lim

n→∞
p

∫ ∞
0

λp−1(gn)∗(λ)dλ = p

∫ ∞
0

λp−1f∗(λ)dλ

as desired.

(b) Given a sequence λn → 0 of positive numbers, define gn = λn ·χ{|f |>λn}. It is clear that
gn is non-negative, bounded above by |f |, and converges pointwise (in fact, uniformly)
to 0. Thus by dominated convergence

lim
n→∞

∫
(gn)pdx = 0.
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But

λpnf∗(λn) =

∫
λpn · χ{|f |>λn}dx =

∫
(gn)pdx

so the above convergence of integrals implies limn→∞ λpnf∗(λn) = 0. Since this holds for
any λn → 0, we may conclude that lim

λ→0
λpf∗(λ) = 0.

To see that lim
λ→∞

λpf∗(λ) = 0, simply repeat the above argument with λn → ∞. (The

convergence gn → 0 is no longer uniform, but it is still dominated.)

4. Let K = {f : (0,+∞)→ R|
∫∞
0
f4(x)dx ≤ 1}. Evaluate

sup
f∈K

∫ ∞
0

f3(x)e−xdx.

Proof. By Holder’s inequality, for p = 4/3 and q = 4,∫ ∞
0

|f3(x)e−x|dx ≤
(∫ ∞

0

|f3(x)|4/3dx
)3/4(∫ ∞

0

e−4xdx

)1/4

=

(∫ ∞
0

|f4(x)|dx
)3/4(

1

4

)1/4

.

Thus for any f ∈ K, the above integral is bounded above by 1/
√

2. This bound is achieved
when f(x) =

√
2e−x ∈ K (i.e. when ‖f‖4 = 1 and f4 ∼ e−4x so Holder gives an equality), so

sup
f∈K

∫ ∞
0

f3(x)e−xdx =
1√
2
.

5. Let f : R→ R be a function such that
∫
R |f(x)|dx <∞. Show that the sequence

hn(x) =
1

n

n∑
k=1

f

(
x+

k

n

)
converges in L1(R).

Proof. Let h : R → R denote the function h(x) =
∫ 1

0
f(x + ξ)dξ, which exists by hypothesis

that f ∈ L1(R). By Tonelli’s theorem∫
R
|h(x)|dx =

∫
R

∣∣∣∣ ∫ 1

0

f(x+ ξ)dξ

∣∣∣∣dx ≤ ∫
R

(∫ 1

0

|f(x+ ξ)|dξ
)
dx

=

∫ 1

0

(∫
R
|f(x+ ξ)|dx

)
dξ = ‖f‖1 <∞,
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so h ∈ L1(R). We claim that hn → h in L1. Indeed if f is Riemann integrable, then we have
convergence pointwise by definition of the Riemann integral:

h(x) =

∫ 1

0

f(x+ ξ)dξ = lim
n→∞

1

n

n∑
k=1

f

(
x+

k

n

)
= lim
n→∞

hn(x).

To show convergence in L1, we will at first assume stronger conditions on f ; namely, suppose
f is continuous with bounded support. Then f is uniformly continuous, so for any ε > 0 there
is some δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε.

Then for any n > 1/δ,

|h(x)− hn(x)| =
∣∣∣∣ ∫ 1

0

f(x+ ξ)dξ − 1

n

n∑
k=1

f(x+ k/n)

∣∣∣∣
≤

n∑
k=1

∣∣∣∣ ∫ k/n

(k−1)/n
f(x+ ξ)dξ − 1

n
f(x+ k/n)

∣∣∣∣
≤

n∑
k=1

∫ k/n

(k−1)/n

∣∣∣∣f(x+ ξ)− f(x+ k/n)

∣∣∣∣dξ ≤ n∑
k=1

∫ k/n

(k−1)/n
ε dξ = ε.

Moreover if supp(f) ⊂ (−R,R), then h(x) = hn(x) = 0 for any x ≤ −R − 1 or x ≥ R, so for
n sufficiently large (depending on ε)

‖h− hn‖1 =

∫
R
|h(x)− hn(x)|dx =

∫ R

−R−1
|h(x)− hn(x)|dx ≤ (2R+ 1)ε.

Since ε was arbitrary this shows hn → h in L1 under the above assumptions on f .

Now for arbitrary f ∈ L1, there is a sequence f (m) of continuous, bounded support functions

that converge to f in L1. Let h
(m)
n , h(m) denote the corresponding functions for f (m). It is

straightforward to check that

‖h− h(m)‖1 ≤ ‖f − f (m)‖1 and ‖hn − h(m)
n ‖1 ≤ ‖f − f (m)‖1

under these conditions by exchanging the order of integration, so

‖h− hn‖1 ≤ ‖h− h(m)‖1 + ‖h(m) − h(m)
n ‖1 + ‖h(m)

n − hn‖1
≤ ‖h(m) − h(m)

n ‖1 + 2‖f − f (m)‖1.

As n→∞ (with m fixed) this shows

lim
n→∞

‖h− hn‖1 ≤ 2‖f − f (m)‖1

and by assumption this upper bound goes to zero as m→∞. This proves the claim.
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Afternoon session

1. Assume that 0 is an isolated singularity of an analytic function f 6= 0. Determine the type of
the singularity if

∞∑
n=1

|f(1/n)|1/n < +∞.

Proof. If the given series converges, then in particular the terms |f(1/n)|1/n in the summation
must approach 0, so for any 1 > ε > 0 we have

|f(1/n)|1/n < ε ⇔ |f(1/n)| < εn

for n sufficiently large. This implies that for any fixed integer k,

lim
n→∞

|f(1/n)|
(1/n)k

≤ lim
n→∞

εn

(1/n)k
= 0.

If f has either a removable singularity or a pole at 0, then f has a Taylor series expansion
around 0 of the form

f(z) = akz
k + ak+1z

k+1 + · · · ,

where ak 6= 0. (If k ≥ 0 then the singularity is removable; if k < 0 it is a pole.) Then for any
sequence of points zn approaching 0, f(zn)/zkn → ak, so taking magnitudes

lim
n→∞

|f(zn)|
|zn|k

= |ak| > 0.

Considering the sequence zn = 1/n→ 0, this shows the singularity at 0 cannot be removable
or a pole if the given series converges, so it must be essential.

To see that it is possible for the given series to converge for some f with an essential singularity
at 0, we may take as an example f(z) = e−1/z

2

. (
∑∞
n=1 |e−n

2 |1/n =
∑∞
n=1 e

−n = 1
e−1 .)

2. Show that for x, y ∈ R,
|y| ≤ | sin(x+ iy)| ≤ e|y|.

Proof. Recall that sin(z) = 1
2i (e

iz − e−iz), so

sin(x+ iy) =
1

2i
(eixe−y − e−ixey).

Taking magnitudes and applying the triangle quality in two ways, we have

| sin(x+ iy)| ≤ 1

2

(
|eixe−y|+ |e−ixey|

)
=

1

2
(e−y + ey) ≤ e|y|

since e|y| = max{e−y, ey}, and

| sin(x+ iy)| ≥ 1

2

∣∣∣∣|eixe−y| − |e−ixey|∣∣∣∣ =
1

2
|e−y − ey| = | sinh(y)|
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so, observing that | sinh(y)| = sinh |y|, it suffices to prove |y| ≤ sinh |y|. Starting from the
easier inequality 0 ≤ sinh |y|,

1 = cosh(0) ≤ cosh(0) +

∫ |y|
0

sinh(y′)dy′ = cosh |y|,

and integrating this inequality again gives us the desired result:

|y| =
∫ |y|
0

dy′ ≤
∫ |y|
0

cosh(y′)dy′ = sinh(|y|).

(We in fact have the stronger bounds sinh |y| ≤ | sin(x+ iy)| ≤ cosh(y).)

3. Let a ∈ (0, 1). Find ∫ ∞
−∞

eax

1 + ex
dx.

Proof. Consider integrating the meromorphic function f(z) =
eaz

1 + ez
along the rectangular

contour with endpoints −R,R,R+ 2πi,−R+ 2πi, with segments labeled as below:

R

R+ 2πi−R+ 2πi

−R x

y

O

γ4

γ3

γ2

γ1

×

The poles of f occur where z = (2k + 1)πi for k ∈ Z, so the only pole in our contour occurs
at z = πi. The residue at this pole is

Resf (πi) = lim
z→πi

(z − πi)eaz

1 + ez
= lim
z→πi

a(z − πi)eaz + eaz

ez
= −eaπi.

The integral along γ1 as R→∞ is the value we are asked to find:

I =

∫ ∞
−∞

eax

1 + ex
dx = lim

R→∞

∫
γ1

fdz.

The integral along γ3 we can relate to the integral along γ1:∫
γ3

fdz =

∫ −R
R

ea(x+2πi)

1 + ex+2πi
dx = −e2aπi

∫ R

−R

eax

1 + ex
dx = −e2aπi

∫
γ1

fdz,

and the integrals along γ2 and γ4 go to zero as R→∞:∣∣∣∣ ∫
γ2

fdz

∣∣∣∣ =

∣∣∣∣ ∫ 2π

0

ea(R+iy)

1 + eR+iy
idy

∣∣∣∣ ≤ ∫ 2π

0

eaR

|1 + eR+iy|
dy ≤ 2π

(
eaR

eR − 1

)
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and

lim
R→∞

eaR

eR − 1
= lim
R→∞

1

e(1−a)R − e−aR
= 0 since 0 < a < 1.

Thus

lim
R→∞

∫
γ1+γ2+γ3+γ4

fdz = (1− e2aπi)I

which by Cauchy’s theorem is equal to 2πi
∑

Resf = −2πieaπi. Thus

I =
−2πieaπi

1− e2aπi
=

π

sin(aπ)
.

4. Find a conformal mapping of domain C\{x+ xi : 1 ≤ x ≤ 2} to the upper half plane. (Here
C = C ∪ {∞}.) It is enough to represent the mapping as a composition of several conformal
mappings.

Proof. We claim the following map works:

f(z) =

√
− z − (1 + i)

z − (2 + 2i)
,

where we choose the branch of the square root sending the positive real axis to itself. The
expression inside the square root is a möbius transformation sending the segment {x+xi : 1 ≤
x ≤ 2} to the positive real axis ∪{∞}, so composing this with the square root will give us the
desired behavior, since

√
z sends C\{positive reals} to the upper half plane conformally.

5. Denote by D the unit disk: D = {z : |z| < 1}. Let {fk : D→ C}k∈N be a normal family. Prove
that the functions

gk(z) = fk(eikz), k ∈ N
form a normal family.

Proof. For n ∈ N let Kn ⊂ D denote the compact set

Kn = {z : |z| ≤ 1− 1/n}.

Since {fk} is a normal family, |fk(z)| must be bounded on each Kn uniformly as k varies. Let
Mn be such a bound, so

|fk(z)| < Mn for all z ∈ Kn, k = 1, 2, . . . .

We claim this is also a uniform bound for {gk} on Kn. Indeed, for each fixed k, n, the rotation
z 7→ eikz sends Kn to itself so

sup
z∈Kn

|gk(z)| = sup
z∈Kn

|fk(eikz)| = sup
w∈Kn

|fk(w)| < Mn.

Thus {gk} is a normal family by Montel’s theorem, since it is uniformly bounded on compact
subsets. (It is clear that any compact subset of D is contained in some Kn.)
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