Morning session

1. Construct a measurable subset A of $(0,1)$ such that $m(A)<1$ and $m(A \cap(a, b))>0$ for any $(a, b) \subset(0,1)$.

Proof. Let $\left\{q_{n}\right\}=\left\{q_{1}, q_{2}, \ldots\right\}$ be an enumeration of the rational numbers in the interval $(0,1)$, and let E_{n} be the open interval

$$
E_{n}=\left(q_{n}-5^{-n}, q_{n}+5^{-n}\right) \cap(0,1)
$$

Then $A=\cup_{n} E_{n} \subset(0,1)$ is measurable, as a countable union of measurable sets, and

$$
m(A) \leq \sum_{n \geq 1} m\left(E_{n}\right) \leq \sum_{n \geq 1} 2 \cdot 5^{-n}=1 / 2
$$

Finally any open interval $(a, b) \subset(0,1)$ contains some rational q_{n}, so the intersection $E_{n} \cap(a, b)$ has positive measure and thus $m(A \cap(a, b))$ is positive as well. Thus A satisfies the specified conditions.
2. Let $\left\{f_{k}(x)\right\}$ be a sequence of non-negative measurable functions on E and $m(E)<\infty$. Show that $\left\{f_{k}(x)\right\}$ converges in measure to 0 if and only if

$$
\lim _{k \rightarrow \infty} \int_{E} \frac{f_{k}(x)}{1+f_{k}(x)} d x=0
$$

Proof. (\Rightarrow) : Suppose $f_{k} \rightarrow 0$ in measure, meaning that for any $\epsilon>0$

$$
m\left(x:\left|f_{k}(x)\right| \geq \epsilon\right) \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

Then since $y \mapsto \frac{y}{1+y}: \mathbb{R}_{\geq 0} \rightarrow[0,1)$ is monotonically increasing,

$$
\begin{aligned}
\int_{E} \frac{f_{k}(x)}{1+f_{k}(x)} d x & =\int_{\left|f_{k}\right|<\epsilon} \frac{f_{k}(x)}{1+f_{k}(x)} d x+\int_{\left|f_{k}\right| \geq \epsilon} \frac{f_{k}(x)}{1+f_{k}(x)} d x \\
& \leq \int_{\left|f_{k}\right|<\epsilon} \frac{\epsilon}{1+\epsilon} d x+\int_{\left|f_{k}\right| \geq \epsilon} 1 d x \\
& \leq m(E) \frac{\epsilon}{1+\epsilon}+m\left(\left|f_{k}\right| \geq \epsilon\right)
\end{aligned}
$$

Taking $k \rightarrow \infty$, we see that $\lim _{k \rightarrow \infty} \int_{E} \frac{f_{k}(x)}{1+f_{k}(x)} d x \leq m(E) \frac{\epsilon}{1+\epsilon}$, and as $\epsilon \rightarrow 0$ this bound goes to zero, so the limit is zero as claimed.
(\Leftarrow) : Observe that for any $\epsilon>0$,

$$
\begin{aligned}
\int_{E} \frac{f_{k}(x)}{1+f_{k}(x)} d x & =\int_{\left|f_{k}\right| \geq \epsilon} \frac{f_{k}(x)}{1+f_{k}(x)} d x+\int_{\left|f_{k}\right|<\epsilon} \frac{f_{k}(x)}{1+f_{k}(x)} d x \\
& \geq \int_{\left|f_{k}\right| \geq \epsilon} \frac{\epsilon}{1+\epsilon} d x \\
& =m\left(\left|f_{k}\right| \geq \epsilon\right) \frac{\epsilon}{1+\epsilon} \geq 0
\end{aligned}
$$

If the given sequence of integrals converges to zero, then (ignoring the non-zero constant factor $\left.\frac{\epsilon}{1+\epsilon}\right)$

$$
\lim _{k \rightarrow \infty} m\left(x:\left|f_{k}(x)\right| \geq \epsilon\right)=0
$$

as well. Thus $f_{k} \rightarrow 0$ in measure.
3. Let $1 \leq p<\infty, f \in L^{p}\left(\mathbb{R}^{n}\right)$. Let

$$
f_{*}(\lambda)=m(\{x:|f(x)|>\lambda\}), \quad \lambda>0
$$

Show that
(a) $p \int_{0}^{\infty} \lambda^{p-1} f_{*}(\lambda) d \lambda=\int|f(x)|^{p} d x$
(b) $\lim _{\lambda \rightarrow \infty} \lambda^{p} f_{*}(\lambda)=0, \quad \lim _{\lambda \rightarrow 0} \lambda^{p} f_{*}(\lambda)=0$.

Proof. (a) Suppose $g=\sum_{k} c_{k} \chi_{E_{k}}$ is a simple function in $L^{p}\left(\mathbb{R}^{n}\right)$, where $\left\{E_{k}\right\}$ are disjoint. Then

$$
g_{*}(\lambda)=\sum_{\substack{k \text { s.t. } \\\left|c_{k}\right|>\lambda}} m\left(E_{k}\right)=\sum_{k} m\left(E_{k}\right) \chi_{\left[0,\left|c_{k}\right|\right)}(\lambda)
$$

and

$$
\begin{aligned}
\int|g|^{p} d x & =\sum_{k} m\left(E_{k}\right)\left|c_{k}\right|^{p}=\sum_{k} m\left(E_{k}\right)\left(\int_{0}^{\left|c_{k}\right|} p \lambda^{p-1} d \lambda\right) \\
& =\sum_{k} m\left(E_{k}\right)\left(\int_{0}^{\infty} p \lambda^{p-1} \chi_{\left[0,\left|c_{k}\right|\right)} d \lambda\right) \\
& =\int_{0}^{\infty} p \lambda^{p-1}\left(\sum_{k} m\left(E_{k}\right) \chi_{\left[0,\left|c_{k}\right|\right)}\right) d \lambda=\int_{0}^{\infty} p \lambda^{p-1} g_{*}(\lambda) d \lambda
\end{aligned}
$$

Thus the desired equality holds for simple functions. For an arbitrary $f \in L^{p}\left(\mathbb{R}^{n}\right)$, we may find a monotonically increasing sequence of simple functions g_{n} that converge pointwise to $|f|$, so that $\left\|g_{n}\right\|_{p} \rightarrow\|f\|_{p}$ by monotone convergence. Under these conditions $g_{n} \leq f$,

$$
\left\{x:\left|g_{n}(x)\right|>\lambda\right\} \subset\{x:|f(x)|>\lambda\} \quad \Rightarrow \quad\left(g_{n}\right)_{*}(\lambda) \leq f_{*}(\lambda)
$$

for all λ, so the sequence $\lambda^{p-1}\left(g_{n}\right)_{*}$ will also converge monotonically to $\lambda^{p-1} f_{*}$. By monotone convergence in $L^{1}(\mathbb{R}),\left\|p \lambda^{p-1}\left(g_{n}\right)_{*}\right\|_{1} \rightarrow\left\|p \lambda^{p-1} f_{*}\right\|_{1}$. Thus

$$
\int|f(x)|^{p} d x=\lim _{n \rightarrow \infty} \int\left|g_{n}(x)\right|^{p} d x=\lim _{n \rightarrow \infty} p \int_{0}^{\infty} \lambda^{p-1}\left(g_{n}\right)_{*}(\lambda) d \lambda=p \int_{0}^{\infty} \lambda^{p-1} f_{*}(\lambda) d \lambda
$$

as desired.
(b) Given a sequence $\lambda_{n} \rightarrow 0$ of positive numbers, define $g_{n}=\lambda_{n} \cdot \chi_{\left\{|f|>\lambda_{n}\right\}}$. It is clear that g_{n} is non-negative, bounded above by $|f|$, and converges pointwise (in fact, uniformly) to 0 . Thus by dominated convergence

$$
\lim _{n \rightarrow \infty} \int\left(g_{n}\right)^{p} d x=0
$$

But

$$
\lambda_{n}^{p} f_{*}\left(\lambda_{n}\right)=\int \lambda_{n}^{p} \cdot \chi_{\left\{|f|>\lambda_{n}\right\}} d x=\int\left(g_{n}\right)^{p} d x
$$

so the above convergence of integrals implies $\lim _{n \rightarrow \infty} \lambda_{n}^{p} f_{*}\left(\lambda_{n}\right)=0$. Since this holds for any $\lambda_{n} \rightarrow 0$, we may conclude that $\lim _{\lambda \rightarrow 0} \lambda^{p} f_{*}(\lambda)=0$.
To see that $\lim _{\lambda \rightarrow \infty} \lambda^{p} f_{*}(\lambda)=0$, simply repeat the above argument with $\lambda_{n} \rightarrow \infty$. (The convergence $g_{n} \rightarrow 0$ is no longer uniform, but it is still dominated.)
4. Let $K=\left\{f:(0,+\infty) \rightarrow \mathbb{R} \mid \int_{0}^{\infty} f^{4}(x) d x \leq 1\right\}$. Evaluate

$$
\sup _{f \in K} \int_{0}^{\infty} f^{3}(x) e^{-x} d x
$$

Proof. By Holder's inequality, for $p=4 / 3$ and $q=4$,

$$
\begin{aligned}
\int_{0}^{\infty}\left|f^{3}(x) e^{-x}\right| d x & \leq\left(\int_{0}^{\infty}\left|f^{3}(x)\right|^{4 / 3} d x\right)^{3 / 4}\left(\int_{0}^{\infty} e^{-4 x} d x\right)^{1 / 4} \\
& =\left(\int_{0}^{\infty}\left|f^{4}(x)\right| d x\right)^{3 / 4}\left(\frac{1}{4}\right)^{1 / 4}
\end{aligned}
$$

Thus for any $f \in K$, the above integral is bounded above by $1 / \sqrt{2}$. This bound is achieved when $f(x)=\sqrt{2} e^{-x} \in K$ (i.e. when $\|f\|_{4}=1$ and $f^{4} \sim e^{-4 x}$ so Holder gives an equality), so

$$
\sup _{f \in K} \int_{0}^{\infty} f^{3}(x) e^{-x} d x=\frac{1}{\sqrt{2}}
$$

5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\int_{\mathbb{R}}|f(x)| d x<\infty$. Show that the sequence

$$
h_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} f\left(x+\frac{k}{n}\right)
$$

converges in $L^{1}(\mathbb{R})$.
Proof. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ denote the function $h(x)=\int_{0}^{1} f(x+\xi) d \xi$, which exists by hypothesis that $f \in L^{1}(\mathbb{R})$. By Tonelli's theorem

$$
\begin{aligned}
\int_{\mathbb{R}}|h(x)| d x=\int_{\mathbb{R}}\left|\int_{0}^{1} f(x+\xi) d \xi\right| d x & \leq \int_{\mathbb{R}}\left(\int_{0}^{1}|f(x+\xi)| d \xi\right) d x \\
& =\int_{0}^{1}\left(\int_{\mathbb{R}}|f(x+\xi)| d x\right) d \xi=\|f\|_{1}<\infty
\end{aligned}
$$

so $h \in L^{1}(\mathbb{R})$. We claim that $h_{n} \rightarrow h$ in L^{1}. Indeed if f is Riemann integrable, then we have convergence pointwise by definition of the Riemann integral:

$$
h(x)=\int_{0}^{1} f(x+\xi) d \xi=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(x+\frac{k}{n}\right)=\lim _{n \rightarrow \infty} h_{n}(x)
$$

To show convergence in L^{1}, we will at first assume stronger conditions on f; namely, suppose f is continuous with bounded support. Then f is uniformly continuous, so for any $\epsilon>0$ there is some $\delta>0$ such that

$$
|x-y|<\delta \quad \Rightarrow \quad|f(x)-f(y)|<\epsilon
$$

Then for any $n>1 / \delta$,

$$
\begin{aligned}
\left|h(x)-h_{n}(x)\right| & =\left|\int_{0}^{1} f(x+\xi) d \xi-\frac{1}{n} \sum_{k=1}^{n} f(x+k / n)\right| \\
& \leq \sum_{k=1}^{n}\left|\int_{(k-1) / n}^{k / n} f(x+\xi) d \xi-\frac{1}{n} f(x+k / n)\right| \\
& \leq \sum_{k=1}^{n} \int_{(k-1) / n}^{k / n}|f(x+\xi)-f(x+k / n)| d \xi \leq \sum_{k=1}^{n} \int_{(k-1) / n}^{k / n} \epsilon d \xi=\epsilon
\end{aligned}
$$

Moreover if $\operatorname{supp}(f) \subset(-R, R)$, then $h(x)=h_{n}(x)=0$ for any $x \leq-R-1$ or $x \geq R$, so for n sufficiently large (depending on ϵ)

$$
\left\|h-h_{n}\right\|_{1}=\int_{\mathbb{R}}\left|h(x)-h_{n}(x)\right| d x=\int_{-R-1}^{R}\left|h(x)-h_{n}(x)\right| d x \leq(2 R+1) \epsilon
$$

Since ϵ was arbitrary this shows $h_{n} \rightarrow h$ in L^{1} under the above assumptions on f.
Now for arbitrary $f \in L^{1}$, there is a sequence $f^{(m)}$ of continuous, bounded support functions that converge to f in L^{1}. Let $h_{n}^{(m)}, h^{(m)}$ denote the corresponding functions for $f^{(m)}$. It is straightforward to check that

$$
\left\|h-h^{(m)}\right\|_{1} \leq\left\|f-f^{(m)}\right\|_{1} \quad \text { and } \quad\left\|h_{n}-h_{n}^{(m)}\right\|_{1} \leq\left\|f-f^{(m)}\right\|_{1}
$$

under these conditions by exchanging the order of integration, so

$$
\begin{aligned}
\left\|h-h_{n}\right\|_{1} & \leq\left\|h-h^{(m)}\right\|_{1}+\left\|h^{(m)}-h_{n}^{(m)}\right\|_{1}+\left\|h_{n}^{(m)}-h_{n}\right\|_{1} \\
& \leq\left\|h^{(m)}-h_{n}^{(m)}\right\|_{1}+2\left\|f-f^{(m)}\right\|_{1} .
\end{aligned}
$$

As $n \rightarrow \infty$ (with m fixed) this shows

$$
\lim _{n \rightarrow \infty}\left\|h-h_{n}\right\|_{1} \leq 2\left\|f-f^{(m)}\right\|_{1}
$$

and by assumption this upper bound goes to zero as $m \rightarrow \infty$. This proves the claim.

Afternoon session

1. Assume that 0 is an isolated singularity of an analytic function $f \neq 0$. Determine the type of the singularity if

$$
\sum_{n=1}^{\infty}|f(1 / n)|^{1 / n}<+\infty
$$

Proof. If the given series converges, then in particular the terms $|f(1 / n)|^{1 / n}$ in the summation must approach 0 , so for any $1>\epsilon>0$ we have

$$
|f(1 / n)|^{1 / n}<\epsilon \quad \Leftrightarrow \quad|f(1 / n)|<\epsilon^{n}
$$

for n sufficiently large. This implies that for any fixed integer k,

$$
\lim _{n \rightarrow \infty} \frac{|f(1 / n)|}{(1 / n)^{k}} \leq \lim _{n \rightarrow \infty} \frac{\epsilon^{n}}{(1 / n)^{k}}=0
$$

If f has either a removable singularity or a pole at 0 , then f has a Taylor series expansion around 0 of the form

$$
f(z)=a_{k} z^{k}+a_{k+1} z^{k+1}+\cdots
$$

where $a_{k} \neq 0$. (If $k \geq 0$ then the singularity is removable; if $k<0$ it is a pole.) Then for any sequence of points z_{n} approaching $0, f\left(z_{n}\right) / z_{n}^{k} \rightarrow a_{k}$, so taking magnitudes

$$
\lim _{n \rightarrow \infty} \frac{\left|f\left(z_{n}\right)\right|}{\left|z_{n}\right|^{k}}=\left|a_{k}\right|>0
$$

Considering the sequence $z_{n}=1 / n \rightarrow 0$, this shows the singularity at 0 cannot be removable or a pole if the given series converges, so it must be essential.
To see that it is possible for the given series to converge for some f with an essential singularity at 0 , we may take as an example $f(z)=e^{-1 / z^{2}} .\left(\sum_{n=1}^{\infty}\left|e^{-n^{2}}\right|^{1 / n}=\sum_{n=1}^{\infty} e^{-n}=\frac{1}{e-1}.\right)$
2. Show that for $x, y \in \mathbb{R}$,

$$
|y| \leq|\sin (x+i y)| \leq e^{|y|}
$$

Proof. Recall that $\sin (z)=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)$, so

$$
\sin (x+i y)=\frac{1}{2 i}\left(e^{i x} e^{-y}-e^{-i x} e^{y}\right)
$$

Taking magnitudes and applying the triangle quality in two ways, we have

$$
|\sin (x+i y)| \leq \frac{1}{2}\left(\left|e^{i x} e^{-y}\right|+\left|e^{-i x} e^{y}\right|\right)=\frac{1}{2}\left(e^{-y}+e^{y}\right) \leq e^{|y|}
$$

since $e^{|y|}=\max \left\{e^{-y}, e^{y}\right\}$, and

$$
|\sin (x+i y)| \geq \frac{1}{2}| | e^{i x} e^{-y}\left|-\left|e^{-i x} e^{y}\right|\right|=\frac{1}{2}\left|e^{-y}-e^{y}\right|=|\sinh (y)|
$$

so, observing that $|\sinh (y)|=\sinh |y|$, it suffices to prove $|y| \leq \sinh |y|$. Starting from the easier inequality $0 \leq \sinh |y|$,

$$
1=\cosh (0) \leq \cosh (0)+\int_{0}^{|y|} \sinh \left(y^{\prime}\right) d y^{\prime}=\cosh |y|
$$

and integrating this inequality again gives us the desired result:

$$
|y|=\int_{0}^{|y|} d y^{\prime} \leq \int_{0}^{|y|} \cosh \left(y^{\prime}\right) d y^{\prime}=\sinh (|y|)
$$

(We in fact have the stronger bounds $\sinh |y| \leq|\sin (x+i y)| \leq \cosh (y)$.)
3. Let $a \in(0,1)$. Find

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x
$$

Proof. Consider integrating the meromorphic function $f(z)=\frac{e^{a z}}{1+e^{z}}$ along the rectangular contour with endpoints $-R, R, R+2 \pi i,-R+2 \pi i$, with segments labeled as below:

The poles of f occur where $z=(2 k+1) \pi i$ for $k \in \mathbb{Z}$, so the only pole in our contour occurs at $z=\pi i$. The residue at this pole is

$$
\operatorname{Res}_{f}(\pi i)=\lim _{z \rightarrow \pi i} \frac{(z-\pi i) e^{a z}}{1+e^{z}}=\lim _{z \rightarrow \pi i} \frac{a(z-\pi i) e^{a z}+e^{a z}}{e^{z}}=-e^{a \pi i}
$$

The integral along γ_{1} as $R \rightarrow \infty$ is the value we are asked to find:

$$
I=\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\lim _{R \rightarrow \infty} \int_{\gamma_{1}} f d z
$$

The integral along γ_{3} we can relate to the integral along γ_{1} :

$$
\int_{\gamma_{3}} f d z=\int_{R}^{-R} \frac{e^{a(x+2 \pi i)}}{1+e^{x+2 \pi i}} d x=-e^{2 a \pi i} \int_{-R}^{R} \frac{e^{a x}}{1+e^{x}} d x=-e^{2 a \pi i} \int_{\gamma_{1}} f d z
$$

and the integrals along γ_{2} and γ_{4} go to zero as $R \rightarrow \infty$:

$$
\left|\int_{\gamma_{2}} f d z\right|=\left|\int_{0}^{2 \pi} \frac{e^{a(R+i y)}}{1+e^{R+i y}} i d y\right| \leq \int_{0}^{2 \pi} \frac{e^{a R}}{\left|1+e^{R+i y}\right|} d y \leq 2 \pi\left(\frac{e^{a R}}{e^{R}-1}\right)
$$

and

$$
\lim _{R \rightarrow \infty} \frac{e^{a R}}{e^{R}-1}=\lim _{R \rightarrow \infty} \frac{1}{e^{(1-a) R}-e^{-a R}}=0 \quad \text { since } 0<a<1
$$

Thus

$$
\lim _{R \rightarrow \infty} \int_{\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}} f d z=\left(1-e^{2 a \pi i}\right) I
$$

which by Cauchy's theorem is equal to $2 \pi i \sum \operatorname{Res}_{f}=-2 \pi i e^{a \pi i}$. Thus

$$
I=\frac{-2 \pi i e^{a \pi i}}{1-e^{2 a \pi i}}=\frac{\pi}{\sin (a \pi)}
$$

4. Find a conformal mapping of domain $\overline{\mathbb{C}} \backslash\{x+x i: 1 \leq x \leq 2\}$ to the upper half plane. (Here $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$.) It is enough to represent the mapping as a composition of several conformal mappings.

Proof. We claim the following map works:

$$
f(z)=\sqrt{-\frac{z-(1+i)}{z-(2+2 i)}}
$$

where we choose the branch of the square root sending the positive real axis to itself. The expression inside the square root is a möbius transformation sending the segment $\{x+x i: 1 \leq$ $x \leq 2\}$ to the positive real axis $\cup\{\infty\}$, so composing this with the square root will give us the desired behavior, since \sqrt{z} sends $\mathbb{C} \backslash\{$ positive reals $\}$ to the upper half plane conformally.
5. Denote by \mathbb{D} the unit disk: $\mathbb{D}=\{z:|z|<1\}$. Let $\left\{f_{k}: \mathbb{D} \rightarrow \mathbb{C}\right\}_{k \in \mathbb{N}}$ be a normal family. Prove that the functions

$$
g_{k}(z)=f_{k}\left(e^{i k} z\right), \quad k \in \mathbb{N}
$$

form a normal family.
Proof. For $n \in \mathbb{N}$ let $K_{n} \subset \mathbb{D}$ denote the compact set

$$
K_{n}=\{z:|z| \leq 1-1 / n\} .
$$

Since $\left\{f_{k}\right\}$ is a normal family, $\left|f_{k}(z)\right|$ must be bounded on each K_{n} uniformly as k varies. Let M_{n} be such a bound, so

$$
\left|f_{k}(z)\right|<M_{n} \quad \text { for all } z \in K_{n}, k=1,2, \ldots
$$

We claim this is also a uniform bound for $\left\{g_{k}\right\}$ on K_{n}. Indeed, for each fixed k, n, the rotation $z \mapsto e^{i k} z$ sends K_{n} to itself so

$$
\sup _{z \in K_{n}}\left|g_{k}(z)\right|=\sup _{z \in K_{n}}\left|f_{k}\left(e^{i k} z\right)\right|=\sup _{w \in K_{n}}\left|f_{k}(w)\right|<M_{n}
$$

Thus $\left\{g_{k}\right\}$ is a normal family by Montel's theorem, since it is uniformly bounded on compact subsets. (It is clear that any compact subset of \mathbb{D} is contained in some K_{n}.)

