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Morning session

1. Prove that there exists an analytic function f : D → D such that f(1/2) = f(−1/2) and
f ′(z) 6= 0 for all z ∈ D.

Proof. Consider the map e2πiz : C→ C. This map is 1-periodic and has non-vanishing deriva-
tive 2πie2πiz, and the closed disk D is sent by this map to some bounded region {z : |z| < M}.
Then

f(z) =
1

M
e2πiz

has the desired properties.

2. Let f be a polynomial such that

|f(z)| ≤ 1− |z|2 + |z|1000

for all z ∈ C. Prove that |f(0)| ≤ 0.2.

Proof. Consider the values of f on the circle of radius 0.9 around the origin:

|z| = 0.9 ⇒ |f(z)| ≤ 1− (0.9)2 + (0.9)1000

= 0.2− 0.01 + (0.9)1000 < 0.2.

Thus by the maximum modulus principle |f(z)| < 0.2 for all z in the interior of this circle
(since f is entire), so in particular |f(0)| < 0.2.

3. Let fk : D → C be a normal family of analytic functions and let hk : D → D be analytic
functions satisfying hk(0) = 0. Prove that the functions

gk(z) = fk(hk(z))

form a normal family.

Proof. For n ∈ N let Kn ⊂ D denote the compact set

Kn = {z : |z| ≤ 1− 1/n}.

Since {fk} is a normal family, |fk(z)| must be bounded on each Kn uniformly as k varies. Let
Mn be such a bound, so

|fk(z)| < Mn for all z ∈ Kn, k = 1, 2, . . . .

We claim this is also a uniform bound for {gk} on Kn. Indeed, by Schwarz’s lemma hk(Kn) ⊂
Kn for all k, n so for each fixed k, n

sup
z∈Kn

|gk(z)| = sup
z∈Kn

|fk(hk(z))| ≤ sup
w∈Kn

|fk(w)| < Mn.

Thus {gk} is a normal family by Montel’s theorem. (It is clear that any compact subset of D
is contained in some Kn.)
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4. Let

Ω1 = C\
(
{0} ∪ {1/n : n ∈ N}

)
and

Ω2 = C\{z : Im z = 0, |Re z| ≥ 1}.

Construct a non-constant analytic function f : Ω1 → Ω2 or show that this is impossible.

Proof. We claim this is not possible; namely, any analytic f : Ω1 → Ω2 must be constant.

Suppose f : Ω1 → Ω2 is analytic. We can post-compose with an analytic isomorphism Ω2 → D
to obtain an analytic function f̃ : Ω1 → D. Since we have the uniform bound |f̃(z)| < 1 for
all z ∈ Ω1, the behavior of f̃ near the isolated points 1/n cannot be a pole or essential
singularity, so f̃ must have a removable singularity at each 1/n. Thus, f̃ can be extended to a
map C\{0} → D, and by the same reasoning this function must have a removable singularity
at 0 so f̃ may be extended to an entire function C→ D. But by Liouville’s theorem all such
functions are constant, so f is constant, as claimed.

5. Let f(z) be the branch of
√
z2 − 1 on |z| > 1 satisfying lim

z→∞

f(z)

z
= 1.

(a) Determine the coefficients α, β, γ, δ, ε in the Laurent expansion

f(z) = αz + β + γz−1 + δz−2 + εz−3 + · · · .

(b) Compute

∫
|z|=2

(5 + 6z + 7z2)f(z)dz.

Proof. (a) From the limit expression it is clear that α = 1. Squaring the given Laurent
expansion gives

f(z)2 = α2z2 + (2αβ)z + (2αγ + β2) + (2αδ + 2βγ)z−1 + (2αε+ 2βδ + γ2)z−2 + · · ·
= z2 + (2β)z + (2γ + β2) + (2δ + 2βγ)z−1 + (2ε+ 2βδ + γ2)z−2 + · · ·

which must match coefficient-wise with the Laurent expansion f(z)2 = z2 − 1. Thus we
have the system of equations

2β = 0

2γ + β2 = −1

2δ + 2βγ = 0

2ε+ 2βδ + γ2 = 0

which has the solution (α, β, γ, δ, ε) = (1, 0,−1/2, 0,−1/8).

(b) Observe that the integrand (5+6z+7z2)f(z) is not meromorphic in the “interior” region
{z : |z| ≤ 2}, but is meromorphic in the region {z : |z| ≥ 2} ∪ {∞}, with a single pole
at ∞. Thus in order to evaluate the given contour integral using Cauchy’s formula, we
switch coordinates to a neighborhood of z = ∞. The above Laurent expansion shows
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how to express f in such a neighborhood: changing coordinates to w = 1/z, we may
express f in a neighborhood of w = 0 as

f(w) = w−1 − 1

2
w − 1

8
w3 + · · · = w−1

∑
n≥0

(
1/2

n

)
(−w2)n

which has radius of convergence |w| < 1. Changing the given intergral to the coordinate
w, we have∫
|z|=2
(ccw)

(5 + 6z + 7z2)f(z)dz =

∫
|w|=1/2
clockwise

(5 + 6w−1 + 7w−2)f(w−1)(−w−2dw)

=

∫
|w|=1/2

c-clockwise

(7w−4 + 6w−3 + 5w−2)(w−1 − 1

2
w − 1

8
w3 + · · · )dw

=

∫
|w|=1/2

(· · ·+ (−7

8
− 5

2
)w−1 + · · · )dw.

Since the only pole occurs at w = 0, with residue −27/8, Cauchy’s integral formula tells
us ∫

∂K

g(w)dw = 2πi
∑

poles a∈K

Resg(a) = −27

4
πi.
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Afternoon session

1. Let f : [a, b] → R be a continuous function. Prove that the set of points where f is differen-
tiable is measurable.

Proof. Define

f ′(x) = lim inf
h→0

f(x+ h)− f(x)

h
, f

′
(x) = lim sup

h→0

f(x+ h)− f(x)

h
.

It suffices to prove that both f ′ and f
′

are measurable, since then

{x : f differentiable at x} = {x : f
′
(x)− f ′(x) = 0}.

For this, observe that

f ′(x) = lim
n→∞

(
inf

0<|h|<1/n

f(x+ h)− f(x)

h

)
= lim
n→∞

(
inf

0<|hi|<1/n
hi rational

f(x+ hi)− f(x)

hi

)
where it suffices to consider rational hi because f is continuous. For any non-zero h it is clear
that the difference quotient

∆hf(x) =
f(x+ h)− f(x)

h
defines a measurable function on [a, b] ∩ [a − h, b − h], which we may extend to [a, b] by
±∞ as appropriate. The above equation expresses f ′ as the limit of a countable infimum of

measurable functions. Thus f ′ is measurable, and f
′
is measurable by the same reasoning.

2. Let f1, f2, . . . , f, g be measurable functions on a measure space (X,A, µ). Assume that fn → f
in measure and fn ≤ g a.e. Prove that f ≤ g a.e.

Proof. Under the given conditions hn = g − fn is a sequence of a.e. non-negative functions
that converge in measure to h = g− f , and the claim is that h must also be non-negative a.e.

For any ε > 0

{x : h(x) ≤ −ε} ⊂ {x : |hn(x)− h(x)| > ε/2} ∪ {x : hn(x) < 0},

which implies that

µ({x : h(x) ≤ −ε}) ≤ µ({|hn(x)− h(x)| > ε/2})

since hn is non-negative a.e. by assumption. This holds for any n, so it also holds for the
limit as n→∞. But this limit is 0 by assumption that hn → h in measure:

µ(x : h(x) < 0) = lim
ε→0+

µ(x : h(x) ≤ −ε)

≤ lim
ε→0+

(
lim
n→∞

µ(x : |hn(x)− h(x)| > ε/2)

)
= lim
ε→0+

(0) = 0.

(Alternate proof: If fn → f in measure, then there is some subsequence fnk
that converges

pointwise to f a.e. Since fnk
≤ g a.e., this clearly implies f ≤ g a.e.)
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3. Let q1, q2, . . . be an enumeration of Q ∩ [0, 1] and let r, t ∈ (0, 1). Consider the set

E :=

{
x ∈ [0, 1] :

∞∑
j=1

tj |x− qj |−r <∞
}
.

(a) Show that E 6= [0, 1]\Q.

(b) Show that m([0, 1]\E) = 0.

Proof. (a) To ease notation let

fj(x) = tj |x− qj |−r and S(x) =

∞∑
j=1

fj(x).

It is clear that the inclusion E ⊂ [0, 1]\Q holds, since for any rational qj ∈ [0, 1] there
is a single term in the summation (namely fj) that is infinite at qj . It suffices to show
that this inclusion is strict, i.e. there is some irrational p ∈ [0, 1] such that p 6∈ E.

We observe that for every index j, there is a positive-length closed interval on which
fj(x) ≥ 1/2, and moreover we may choose this interval to lie inside an arbitrarily small
neighborhood of qj , and to not contain the point qj . Let I1 be such an interval, not
containing q1, on which f1(x) ≥ 1/2. Let j2 be the smallest index such that qj2 ∈ I1,
and let I2 ⊂ I1 be an interval not containing qj2 on which fj2(x) ≥ 1/2. Then continue
in the same manner: for any i ≥ 2 let ji be the smallest index such that qji ∈ Ii−1 and
let Ii ⊂ Ii−1 be an interval not containing qji on which fji(x) ≥ 1/2. This process gives
us an increasing sequence of indices 1 = j1 < j2 < j3 < · · · and a nested (/decreasing)
sequence of closed intervals I1 ⊃ I2 ⊃ · · · .
Now consider the intersection ∩iIi. It is clear that this intersection is disjoint from E
since

S(x) =
∑
j≥1

fj(x) ≥
∑
ji

fji(x) ≥
∑
j1

1/2 =∞ for any x ∈ ∩iIi.

We also claim that ∩iIi is disjoint from the rationals Q. Indeed, if we had some rational
qj ∈ ∩iIi, we could compare the index j with the sequence j1 < j2 < · · · ; eventually
jn > j, but since both

qj , qjn ∈ In−1,

this contradicts our assumption that we choose the smallest index in each step above.
Since the intervals Ii form a nested sequence of compact sets, their intersection is non-
empty by Cantor’s theorem so any p ∈ ∩iIi suffices for our purposes.

(b) If m([0, 1]\E) > 0, then the integral of S over [0, 1] must clearly be infinite, so it suffices
to show that this integral is finite:∫ 1

0

S(x)dx =

∫ 1

0

∞∑
j=1

tj |x− qj |−rdx =

∞∑
j=1

tj
∫ 1

0

|x− qj |−rdx

≤
∞∑
j=1

tj
∫ qj+1

qj−1
|x− qj |−rdx =

∞∑
j=1

tj
2

1− r
=

2

1− r
t

1− t
<∞.
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(We may interchange summation signs since all terms are positive.) Thus the claim
follows.

4. For f ∈ L1(R,m) let Tf(x) =
∫ x+1

x−1 fdm.

(a) Show that if Tf = 4f a.e. then f = 0 a.e.

(b) Does the conclusion of (a) still hold if we only assume that f is integrable on each
bounded interval in R?

Proof. (a) We first verify that Tf ∈ L1, applying Tonelli’s theorem:∫
R
|Tf(x)|dx ≤

∫
R

∫ 1

−1
|f(x+ y)|dydx =

∫ 1

−1

∫
R
|f(x+ y)|dxdy = 2‖f‖1 <∞.

But by linearity of the 1-norm ‖4f‖1 = 4‖f‖1. Thus Tf = 4f a.e. implies

‖Tf‖1 = 4‖f‖1 ≤ 2‖f‖1 ⇒ ‖f‖1 = 0.

Since the 1-norm is non-degenerate this means f = 0 a.e.

(b) No; consider the counter-example f = ekx (with k some parameter to be chosen later):

Tf(x) =

∫ 1

−1
ek(x+y)dy = ekx

∫ 1

−1
ekydy = ekx

(
ek − e−k

k

)
=: A(k)f(x).

The function A(k) = 1
k (ek − e−k) is continuous for k > 0, has limit A(k)→ 2 as k → 0,

and approaches +∞ as k →∞. Thus some value k0 satisfies A(k0) = 4.

5. Prove the sequence

fn(x) = n1/2 exp

(
− n2x2

x+ 1

)
converges in Lp([0,+∞),m) for 1 ≤ p < 2 and diverges for p ≥ 2.

Proof. It is clear the fn → 0 pointwise a.e. (everywhere except at x = 0), so we must show
that ‖fn‖p → 0 as n→∞ for 1 ≤ p < 2, and ‖fn‖p 6→ 0 for p ≥ 2.

To show convergence in the desired range, we note the two inequalities

0 ≤ x2

2
≤ x2

x+ 1
on [0, 1], and 0 ≤ x− 1 ≤ x2

x+ 1
on [1,∞),
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so that

‖fn‖pp = np/2
(∫ 1

0

exp

(
− pn2x2

x+ 1

)
dx+

∫ ∞
1

exp

(
− pn2x2

x+ 1

)
dx

)
≤ np/2

(∫ 1

0

exp

(
− pn2x2

2

)
dx+

∫ ∞
1

exp

(
− pn2(x− 1)

)
dx

)
≤ np/2

(∫ ∞
0

exp(−y2)
dy√
pn2/2

+

∫ ∞
0

exp(−y)
dy

pn2

)
= np/2

(
1

n
√
p/2

√
π

2
+

1

pn2

)
= C1

np/2

n
+ C2

np/2

n2

where C1 and C2 are positive constants depending on p. If p < 2 then both terms in this
upper bound go to 0 as n→∞, so ‖fn‖p → 0 as claimed.

To show divergence in the desired range, we use that 0 ≤ x2

x+1 ≤ x
2 on [0,∞) to see

‖fn‖pp = np/2
(∫ ∞

0

exp

(
− pn2x2

x+ 1

)
dx

)
≥ np/2

(∫ ∞
0

exp

(
− pn2x2

)
dx

)
= np/2

(∫ ∞
0

exp(−y2)
dy√
pn2

)
= np/2

(
1

n
√
p

√
π

2

)
= C

np/2

n

where C is some positive constant depending on p. If p ≥ 2 then this lower bound is ≥ C so
‖fn‖p 6→ 0 as n→∞ .
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