Morning session

1. Prove that there exists an analytic function $f: \mathbb{D} \rightarrow \mathbb{D}$ such that $f(1 / 2)=f(-1 / 2)$ and $f^{\prime}(z) \neq 0$ for all $z \in \mathbb{D}$.

Proof. Consider the map $e^{2 \pi i z}: \mathbb{C} \rightarrow \mathbb{C}$. This map is 1 -periodic and has non-vanishing derivative $2 \pi i e^{2 \pi i z}$, and the closed disk $\overline{\mathbb{D}}$ is sent by this map to some bounded region $\{z:|z|<M\}$. Then

$$
f(z)=\frac{1}{M} e^{2 \pi i z}
$$

has the desired properties.
2. Let f be a polynomial such that

$$
|f(z)| \leq 1-|z|^{2}+|z|^{1000}
$$

for all $z \in \mathbb{C}$. Prove that $|f(0)| \leq 0.2$.
Proof. Consider the values of f on the circle of radius 0.9 around the origin:

$$
\begin{aligned}
|z|=0.9 \quad \Rightarrow \quad|f(z)| & \leq 1-(0.9)^{2}+(0.9)^{1000} \\
& =0.2-0.01+(0.9)^{1000}<0.2
\end{aligned}
$$

Thus by the maximum modulus principle $|f(z)|<0.2$ for all z in the interior of this circle (since f is entire), so in particular $|f(0)|<0.2$.
3. Let $f_{k}: \mathbb{D} \rightarrow \mathbb{C}$ be a normal family of analytic functions and let $h_{k}: \mathbb{D} \rightarrow \mathbb{D}$ be analytic functions satisfying $h_{k}(0)=0$. Prove that the functions

$$
g_{k}(z)=f_{k}\left(h_{k}(z)\right)
$$

form a normal family.
Proof. For $n \in \mathbb{N}$ let $K_{n} \subset \mathbb{D}$ denote the compact set

$$
K_{n}=\{z:|z| \leq 1-1 / n\} .
$$

Since $\left\{f_{k}\right\}$ is a normal family, $\left|f_{k}(z)\right|$ must be bounded on each K_{n} uniformly as k varies. Let M_{n} be such a bound, so

$$
\left|f_{k}(z)\right|<M_{n} \quad \text { for all } z \in K_{n}, k=1,2, \ldots
$$

We claim this is also a uniform bound for $\left\{g_{k}\right\}$ on K_{n}. Indeed, by Schwarz's lemma $h_{k}\left(K_{n}\right) \subset$ K_{n} for all k, n so for each fixed k, n

$$
\sup _{z \in K_{n}}\left|g_{k}(z)\right|=\sup _{z \in K_{n}}\left|f_{k}\left(h_{k}(z)\right)\right| \leq \sup _{w \in K_{n}}\left|f_{k}(w)\right|<M_{n}
$$

Thus $\left\{g_{k}\right\}$ is a normal family by Montel's theorem. (It is clear that any compact subset of \mathbb{D} is contained in some K_{n}.)
4. Let

$$
\Omega_{1}=\mathbb{C} \backslash(\{0\} \cup\{1 / n: n \in \mathbb{N}\})
$$

and

$$
\Omega_{2}=\mathbb{C} \backslash\{z: \operatorname{Im} z=0, \quad|\operatorname{Re} z| \geq 1\}
$$

Construct a non-constant analytic function $f: \Omega_{1} \rightarrow \Omega_{2}$ or show that this is impossible.
Proof. We claim this is not possible; namely, any analytic $f: \Omega_{1} \rightarrow \Omega_{2}$ must be constant.
Suppose $f: \Omega_{1} \rightarrow \Omega_{2}$ is analytic. We can post-compose with an analytic isomorphism $\Omega_{2} \rightarrow \mathbb{D}$ to obtain an analytic function $\tilde{f}: \Omega_{1} \rightarrow \mathbb{D}$. Since we have the uniform bound $|\tilde{f}(z)|<1$ for all $z \in \Omega_{1}$, the behavior of \tilde{f} near the isolated points $1 / n$ cannot be a pole or essential singularity, so \tilde{f} must have a removable singularity at each $1 / n$. Thus, \tilde{f} can be extended to a $\operatorname{map} \mathbb{C} \backslash\{0\} \rightarrow \mathbb{D}$, and by the same reasoning this function must have a removable singularity at 0 so \tilde{f} may be extended to an entire function $\mathbb{C} \rightarrow \mathbb{D}$. But by Liouville's theorem all such functions are constant, so f is constant, as claimed.
5. Let $f(z)$ be the branch of $\sqrt{z^{2}-1}$ on $|z|>1$ satisfying $\lim _{z \rightarrow \infty} \frac{f(z)}{z}=1$.
(a) Determine the coefficients $\alpha, \beta, \gamma, \delta, \epsilon$ in the Laurent expansion

$$
f(z)=\alpha z+\beta+\gamma z^{-1}+\delta z^{-2}+\epsilon z^{-3}+\cdots
$$

(b) Compute $\int_{|z|=2}\left(5+6 z+7 z^{2}\right) f(z) d z$.

Proof. (a) From the limit expression it is clear that $\alpha=1$. Squaring the given Laurent expansion gives

$$
\begin{aligned}
f(z)^{2} & =\alpha^{2} z^{2}+(2 \alpha \beta) z+\left(2 \alpha \gamma+\beta^{2}\right)+(2 \alpha \delta+2 \beta \gamma) z^{-1}+\left(2 \alpha \epsilon+2 \beta \delta+\gamma^{2}\right) z^{-2}+\cdots \\
& =z^{2}+(2 \beta) z+\left(2 \gamma+\beta^{2}\right)+(2 \delta+2 \beta \gamma) z^{-1}+\left(2 \epsilon+2 \beta \delta+\gamma^{2}\right) z^{-2}+\cdots
\end{aligned}
$$

which must match coefficient-wise with the Laurent expansion $f(z)^{2}=z^{2}-1$. Thus we have the system of equations

$$
\begin{aligned}
2 \beta & =0 \\
2 \gamma+\beta^{2} & =-1 \\
2 \delta+2 \beta \gamma & =0 \\
2 \epsilon+2 \beta \delta+\gamma^{2} & =0
\end{aligned}
$$

which has the solution $(\alpha, \beta, \gamma, \delta, \epsilon)=(1,0,-1 / 2,0,-1 / 8)$.
(b) Observe that the integrand $\left(5+6 z+7 z^{2}\right) f(z)$ is not meromorphic in the "interior" region $\{z:|z| \leq 2\}$, but is meromorphic in the region $\{z:|z| \geq 2\} \cup\{\infty\}$, with a single pole at ∞. Thus in order to evaluate the given contour integral using Cauchy's formula, we switch coordinates to a neighborhood of $z=\infty$. The above Laurent expansion shows
how to express f in such a neighborhood: changing coordinates to $w=1 / z$, we may express f in a neighborhood of $w=0$ as

$$
f(w)=w^{-1}-\frac{1}{2} w-\frac{1}{8} w^{3}+\cdots=w^{-1} \sum_{n \geq 0}\binom{1 / 2}{n}\left(-w^{2}\right)^{n}
$$

which has radius of convergence $|w|<1$. Changing the given intergral to the coordinate w, we have

$$
\begin{aligned}
\int_{\substack{|z|=2 \\
(\mathrm{ccw})}}\left(5+6 z+7 z^{2}\right) f(z) d z & =\int_{\substack{|w|=1 / 2 \\
\text { clockwise }}}\left(5+6 w^{-1}+7 w^{-2}\right) f\left(w^{-1}\right)\left(-w^{-2} d w\right) \\
& =\int_{\substack{|w|=1 / 2 \\
\text { c-clockwise }}}\left(7 w^{-4}+6 w^{-3}+5 w^{-2}\right)\left(w^{-1}-\frac{1}{2} w-\frac{1}{8} w^{3}+\cdots\right) d w \\
& =\int_{|w|=1 / 2}\left(\cdots+\left(-\frac{7}{8}-\frac{5}{2}\right) w^{-1}+\cdots\right) d w
\end{aligned}
$$

Since the only pole occurs at $w=0$, with residue $-27 / 8$, Cauchy's integral formula tells us

$$
\int_{\partial K} g(w) d w=2 \pi i \sum_{\text {poles } a \in K} \operatorname{Res}_{g}(a)=-\frac{27}{4} \pi i
$$

Afternoon session

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Prove that the set of points where f is differentiable is measurable.

Proof. Define

$$
\underline{f}^{\prime}(x)=\liminf _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, \quad \bar{f}^{\prime}(x)=\limsup _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

It suffices to prove that both \underline{f}^{\prime} and \bar{f}^{\prime} are measurable, since then

$$
\{x: f \text { differentiable at } x\}=\left\{x: \bar{f}^{\prime}(x)-\underline{f}^{\prime}(x)=0\right\} .
$$

For this, observe that

$$
\underline{f}^{\prime}(x)=\lim _{n \rightarrow \infty}\left(\inf _{0<|h|<1 / n} \frac{f(x+h)-f(x)}{h}\right)=\lim _{n \rightarrow \infty}\left(\inf _{\substack{0<\left|h_{i}\right|<1 / n \\ h_{i} \text { rational }}} \frac{f\left(x+h_{i}\right)-f(x)}{h_{i}}\right)
$$

where it suffices to consider rational h_{i} because f is continuous. For any non-zero h it is clear that the difference quotient

$$
\Delta_{h} f(x)=\frac{f(x+h)-f(x)}{h}
$$

defines a measurable function on $[a, b] \cap[a-h, b-h]$, which we may extend to $[a, b]$ by $\pm \infty$ as appropriate. The above equation expresses \underline{f}^{\prime} as the limit of a countable infimum of measurable functions. Thus \underline{f}^{\prime} is measurable, and \bar{f}^{\prime} is measurable by the same reasoning.
2. Let $f_{1}, f_{2}, \ldots, f, g$ be measurable functions on a measure space (X, \mathcal{A}, μ). Assume that $f_{n} \rightarrow f$ in measure and $f_{n} \leq g$ a.e. Prove that $f \leq g$ a.e.

Proof. Under the given conditions $h_{n}=g-f_{n}$ is a sequence of a.e. non-negative functions that converge in measure to $h=g-f$, and the claim is that h must also be non-negative a.e. For any $\epsilon>0$

$$
\{x: h(x) \leq-\epsilon\} \subset\left\{x:\left|h_{n}(x)-h(x)\right|>\epsilon / 2\right\} \cup\left\{x: h_{n}(x)<0\right\}
$$

which implies that

$$
\mu(\{x: h(x) \leq-\epsilon\}) \leq \mu\left(\left\{\left|h_{n}(x)-h(x)\right|>\epsilon / 2\right\}\right)
$$

since h_{n} is non-negative a.e. by assumption. This holds for any n, so it also holds for the limit as $n \rightarrow \infty$. But this limit is 0 by assumption that $h_{n} \rightarrow h$ in measure:

$$
\begin{aligned}
\mu(x: h(x)<0) & =\lim _{\epsilon \rightarrow 0^{+}} \mu(x: h(x) \leq-\epsilon) \\
& \leq \lim _{\epsilon \rightarrow 0^{+}}\left(\lim _{n \rightarrow \infty} \mu\left(x:\left|h_{n}(x)-h(x)\right|>\epsilon / 2\right)\right) \\
& =\lim _{\epsilon \rightarrow 0^{+}}(0)=0
\end{aligned}
$$

(Alternate proof: If $f_{n} \rightarrow f$ in measure, then there is some subsequence $f_{n_{k}}$ that converges pointwise to f a.e. Since $f_{n_{k}} \leq g$ a.e., this clearly implies $f \leq g$ a.e.)
3. Let q_{1}, q_{2}, \ldots be an enumeration of $\mathbb{Q} \cap[0,1]$ and let $r, t \in(0,1)$. Consider the set

$$
E:=\left\{x \in[0,1]: \sum_{j=1}^{\infty} t^{j}\left|x-q_{j}\right|^{-r}<\infty\right\}
$$

(a) Show that $E \neq[0,1] \backslash \mathbb{Q}$.
(b) Show that $m([0,1] \backslash E)=0$.

Proof. (a) To ease notation let

$$
f_{j}(x)=t^{j}\left|x-q_{j}\right|^{-r} \quad \text { and } \quad S(x)=\sum_{j=1}^{\infty} f_{j}(x)
$$

It is clear that the inclusion $E \subset[0,1] \backslash \mathbb{Q}$ holds, since for any rational $q_{j} \in[0,1]$ there is a single term in the summation (namely f_{j}) that is infinite at q_{j}. It suffices to show that this inclusion is strict, i.e. there is some irrational $p \in[0,1]$ such that $p \notin E$.
We observe that for every index j, there is a positive-length closed interval on which $f_{j}(x) \geq 1 / 2$, and moreover we may choose this interval to lie inside an arbitrarily small neighborhood of q_{j}, and to not contain the point q_{j}. Let I_{1} be such an interval, not containing q_{1}, on which $f_{1}(x) \geq 1 / 2$. Let j_{2} be the smallest index such that $q_{j_{2}} \in I_{1}$, and let $I_{2} \subset I_{1}$ be an interval not containing $q_{j_{2}}$ on which $f_{j_{2}}(x) \geq 1 / 2$. Then continue in the same manner: for any $i \geq 2$ let j_{i} be the smallest index such that $q_{j_{i}} \in I_{i-1}$ and let $I_{i} \subset I_{i-1}$ be an interval not containing $q_{j_{i}}$ on which $f_{j_{i}}(x) \geq 1 / 2$. This process gives us an increasing sequence of indices $1=j_{1}<j_{2}<j_{3}<\cdots$ and a nested (/decreasing) sequence of closed intervals $I_{1} \supset I_{2} \supset \cdots$.
Now consider the intersection $\cap_{i} I_{i}$. It is clear that this intersection is disjoint from E since

$$
S(x)=\sum_{j \geq 1} f_{j}(x) \geq \sum_{j_{i}} f_{j_{i}}(x) \geq \sum_{j_{1}} 1 / 2=\infty \quad \text { for any } x \in \cap_{i} I_{i}
$$

We also claim that $\cap_{i} I_{i}$ is disjoint from the rationals \mathbb{Q}. Indeed, if we had some rational $q_{j} \in \cap_{i} I_{i}$, we could compare the index j with the sequence $j_{1}<j_{2}<\cdots$; eventually $j_{n}>j$, but since both

$$
q_{j}, q_{j_{n}} \in I_{n-1}
$$

this contradicts our assumption that we choose the smallest index in each step above. Since the intervals I_{i} form a nested sequence of compact sets, their intersection is nonempty by Cantor's theorem so any $p \in \cap_{i} I_{i}$ suffices for our purposes.
(b) If $m([0,1] \backslash E)>0$, then the integral of S over $[0,1]$ must clearly be infinite, so it suffices to show that this integral is finite:

$$
\begin{aligned}
\int_{0}^{1} S(x) d x & =\int_{0}^{1} \sum_{j=1}^{\infty} t^{j}\left|x-q_{j}\right|^{-r} d x=\sum_{j=1}^{\infty} t^{j} \int_{0}^{1}\left|x-q_{j}\right|^{-r} d x \\
& \leq \sum_{j=1}^{\infty} t^{j} \int_{q_{j}-1}^{q_{j}+1}\left|x-q_{j}\right|^{-r} d x=\sum_{j=1}^{\infty} t^{j} \frac{2}{1-r}=\frac{2}{1-r} \frac{t}{1-t}<\infty
\end{aligned}
$$

(We may interchange summation signs since all terms are positive.) Thus the claim follows.
4. For $f \in L^{1}(\mathbb{R}, m)$ let $T f(x)=\int_{x-1}^{x+1} f d m$.
(a) Show that if $T f=4 f$ a.e. then $f=0$ a.e.
(b) Does the conclusion of (a) still hold if we only assume that f is integrable on each bounded interval in \mathbb{R} ?

Proof. (a) We first verify that $T f \in L^{1}$, applying Tonelli's theorem:

$$
\int_{\mathbb{R}}|T f(x)| d x \leq \int_{\mathbb{R}} \int_{-1}^{1}|f(x+y)| d y d x=\int_{-1}^{1} \int_{\mathbb{R}}|f(x+y)| d x d y=2\|f\|_{1}<\infty
$$

But by linearity of the 1 -norm $\|4 f\|_{1}=4\|f\|_{1}$. Thus $T f=4 f$ a.e. implies

$$
\|T f\|_{1}=4\|f\|_{1} \leq 2\|f\|_{1} \quad \Rightarrow \quad\|f\|_{1}=0
$$

Since the 1-norm is non-degenerate this means $f=0$ a.e.
(b) No; consider the counter-example $f=e^{k x}$ (with k some parameter to be chosen later):

$$
T f(x)=\int_{-1}^{1} e^{k(x+y)} d y=e^{k x} \int_{-1}^{1} e^{k y} d y=e^{k x}\left(\frac{e^{k}-e^{-k}}{k}\right)=: A(k) f(x)
$$

The function $A(k)=\frac{1}{k}\left(e^{k}-e^{-k}\right)$ is continuous for $k>0$, has limit $A(k) \rightarrow 2$ as $k \rightarrow 0$, and approaches $+\infty$ as $k \rightarrow \infty$. Thus some value k_{0} satisfies $A\left(k_{0}\right)=4$.
5. Prove the sequence

$$
f_{n}(x)=n^{1 / 2} \exp \left(-\frac{n^{2} x^{2}}{x+1}\right)
$$

converges in $L^{p}([0,+\infty), m)$ for $1 \leq p<2$ and diverges for $p \geq 2$.
Proof. It is clear the $f_{n} \rightarrow 0$ pointwise a.e. (everywhere except at $x=0$), so we must show that $\left\|f_{n}\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$ for $1 \leq p<2$, and $\left\|f_{n}\right\|_{p} \nrightarrow 0$ for $p \geq 2$.
To show convergence in the desired range, we note the two inequalities

$$
0 \leq \frac{x^{2}}{2} \leq \frac{x^{2}}{x+1} \quad \text { on }[0,1], \quad \text { and } \quad 0 \leq x-1 \leq \frac{x^{2}}{x+1} \text { on }[1, \infty)
$$

so that

$$
\begin{aligned}
\left\|f_{n}\right\|_{p}^{p} & =n^{p / 2}\left(\int_{0}^{1} \exp \left(-\frac{p n^{2} x^{2}}{x+1}\right) d x+\int_{1}^{\infty} \exp \left(-\frac{p n^{2} x^{2}}{x+1}\right) d x\right) \\
& \leq n^{p / 2}\left(\int_{0}^{1} \exp \left(-\frac{p n^{2} x^{2}}{2}\right) d x+\int_{1}^{\infty} \exp \left(-p n^{2}(x-1)\right) d x\right) \\
& \leq n^{p / 2}\left(\int_{0}^{\infty} \exp \left(-y^{2}\right) \frac{d y}{\sqrt{p n^{2} / 2}}+\int_{0}^{\infty} \exp (-y) \frac{d y}{p n^{2}}\right) \\
& =n^{p / 2}\left(\frac{1}{n \sqrt{p / 2}} \frac{\sqrt{\pi}}{2}+\frac{1}{p n^{2}}\right)=C_{1} \frac{n^{p / 2}}{n}+C_{2} \frac{n^{p / 2}}{n^{2}}
\end{aligned}
$$

where C_{1} and C_{2} are positive constants depending on p. If $p<2$ then both terms in this upper bound go to 0 as $n \rightarrow \infty$, so $\left\|f_{n}\right\|_{p} \rightarrow 0$ as claimed.
To show divergence in the desired range, we use that $0 \leq \frac{x^{2}}{x+1} \leq x^{2}$ on $[0, \infty)$ to see

$$
\begin{aligned}
\left\|f_{n}\right\|_{p}^{p} & =n^{p / 2}\left(\int_{0}^{\infty} \exp \left(-\frac{p n^{2} x^{2}}{x+1}\right) d x\right) \geq n^{p / 2}\left(\int_{0}^{\infty} \exp \left(-p n^{2} x^{2}\right) d x\right) \\
& =n^{p / 2}\left(\int_{0}^{\infty} \exp \left(-y^{2}\right) \frac{d y}{\sqrt{p n^{2}}}\right)=n^{p / 2}\left(\frac{1}{n \sqrt{p}} \frac{\sqrt{\pi}}{2}\right)=C \frac{n^{p / 2}}{n}
\end{aligned}
$$

where C is some positive constant depending on p. If $p \geq 2$ then this lower bound is $\geq C$ so $\left\|f_{n}\right\|_{p} \nrightarrow 0$ as $n \rightarrow \infty$.

