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Morning session

1. Prove or disprove: If E is an open subset of R with m(E) = 1 then there is a finite union of
intervals F containing E with m(F ) < 1.1.

Proof. Consider the countable union of open intervals E = ∪n≥1(n, n+ 1/2n) ⊂ R. It is clear
that m(E) =

∑
n≥1 1/2n = 1. However, if F is a finite union of intervals with m(F ) < ∞,

then F is bounded as a subset of R, so F cannot contain E.

2. Let f ∈ L1 ∩ L4 (on some measure space). Prove that the function

[1, 4]→ R
p 7→ ‖f‖p

is continuous.

Proof. Let N : [1, 4] → R denote the given “norm” function. It suffices to prove Ñ(p) =
‖f‖pp =

∫
|f |p is continuous, since then we have N(p) = exp(log(Ñ(p))/p) is the composition

of continuous functions. Let

E = {x : |f(x)| ≤ 1} and F = {x : |f(x)| > 1}.

We first check that ‖f‖pp <∞ for all p ∈ [1, 4], so that Ñ is well-defined. Indeed∫
|f |p =

∫
E

|f |p +

∫
F

|f |p ≤
∫
E

|f |+
∫
F

|f |4 ≤ ‖f‖1 + ‖f‖44 <∞.

Now to show continuity of Ñ at p ∈ [1, 4], we must prove Ñ(p+ εn)→ Ñ(p) for any sequence
εn → 0 (for which p+ εn ∈ [1, 4]). Given such a sequence, define

gn = |f |p+εn − |f |p ⇒ ‖gn‖1 ≥ |Ñ(p+ εn)− Ñ(p)|.

It is clear that gn → 0 pointwise, and what wish to prove is that gn → 0 in L1. As
∫
|gn| =∫

E
|gn| +

∫
F
|gn|, it suffices to check this on E and F separately. On E, the sequence gn is

dominated by 2|f |:

|gn(x)| ≤ |f(x)|p+εn + |f(x)|p ≤ 2|f(x)| for any x ∈ E,

while of F, gn is dominated by 2|f |4. Thus the limit of integrals goes to zero as claimed, by
dominated convergence. This shows continuity of Ñ as desired.

3. Find all q ≥ 1 such that f(x2) ∈ Lq((0, 1),m) for any f(x) ∈ L4((0, 1),m).

Proof. If q > 2, then f(x) = x−1/2q is in L4 but f(x2) = x−1/q is not in Lq. Thus q ≤ 2 for
the given condition to hold. For q = 2, consider the function

f(x) =
1

x1/4| log(x/2)|1/2
.
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We claim that f ∈ L4 but f(x2) 6∈ L2. Indeed∫ 1

0

f(x)4dx =

∫ 1

0

dx

x log(x/2)2
= − 1

log(x/2)

∣∣∣∣1
0

=
1

log 2
.

while ∫ 1

0

f(x2)2dx =

∫ 1

0

dx

x| log(x2/2)|
= −1

2
log | log(x2/2)|

∣∣∣∣1
0

= −1

2
log log 2 +∞.

Finally, consider 1 ≤ q < 2. Observe that by substitution u = x2,∫ 1

0

f(x2)qdx =

∫ 1

0

f(u)q

2
√
u
du,

and the given bounds on q imply that 2
3 ≤

2
4−q < 1. By applying Holder with conjugate

norms p1 = 4/q and p2 = 4/(4− q),∫ 1

0

∣∣∣∣f(u)q

u1/2

∣∣∣∣du ≤ ‖fq‖p1 · ‖u−1/2‖p2
=

(∫ 1

0

f(u)4du

)q/4(∫ 1

0

u−rdu

)1−q/4

where r =
p2
2

=
2

4− q

and these last two integrals are finite. Thus 1 ≤ q < 2 gives the desired range.

4. Let

E ⊂ {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}
Ex = {y : (x, y) ∈ E}
Ey = {x : (x, y) ∈ E}

and assume that m(Ex) ≥ x3 for any x ∈ [0, 1].

(a) Prove that there exists y ∈ [0, 1] such that m(Ey) ≥ 1
4 .

(b) Prove that there exists y ∈ [0, 1] such that m(Ey) ≥ c, where c > 1/4 is a constant
independent of E. Give an explicit value of c.

Proof. (a) Suppose for a contradiction that m(Ey) < 1/4 for all y ∈ [0, 1]. Then∫ 1

0

m(Ey)dy <

∫ 1

0

1

4
dy =

1

4
,

while by Fubini this integral is equal to∫ 1

0

m(Ex)dx ≥
∫ 1

0

x3dx =
1

4
.

This is a contradiction, so we must have m(Ey) ≥ 1/4 for some y.
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(b) Observe that∫ 1

0

m(Ey)dy ≤
∫ 3/4

0

m(Ey)dy +

∫ 1

3/4

(1− y)dy =

∫ 3/4

0

m(Ey)dy +
1

32

since Ey ⊂ {x : y ≤ x ≤ 1} so m(Ey) ≤ 1 − y . As observed in part (a) we must have∫ 1

0
m(Ey)dy ≥ 1/4, so ∫ 3/4

0

m(Ey)dy ≥ 1

4
− 1

32
=

7

32
.

This implies the “average value” of m(Ey) on this interval is at least 7/32
3/4 = 7/24, so we

may take c = 7/24 using the same argument as in part (a).

5. Let E ⊂ [0, 1] be a measurable set, m(E) ≥ 99
100 . Prove that there exists x ∈ [0, 1] such that

for any r ∈ (0, 1)

m(E ∩ (x− r, x+ r)) ≥ r

4
.

Remark: One approach to this problem involves the Hardy-Littlewood maximal inequality

Proof. Let f = χEc , so the Hardy-Littlewood maximal function f∗ is given by

f∗(x) = sup
x∈B

1

m(B)

∫
B

f(y)dy = sup
x∈B

m(B ∩ Ec)
m(B)

= 1− inf
x∈B

m(B ∩ E)

m(B)

where the supremum is taken over all balls (i.e. intervals) B containing x. It suffices to find
some x satisfying f∗(x) ≤ 7/8, since then

inf
r∈(0,1)

m(E ∩ (x− r, x+ r))

2r
= inf
r∈(0,1)

m(Br ∩ E)

m(Br)
≥ inf
x∈B

m(B ∩ E)

m(B)
≥ 1

8
,

where Br(x) = (x− r, x+ r) denotes the ball of radius r around x.

The Hardy-Littlewood maximal inequality states that for any α > 0,

m(x : f∗(x) > α) ≤ 3

α
‖f‖1.

In our case
3

α
‖f‖1 =

3

α
(1−m(E)) ≤ 1

α

3

100
.

Thus for α = 7/8,

m(x : f∗(x) > 7/8) ≤ 8

7
· 3

100
< 1

so the complement {x : f∗(x) ≤ 7/8} has positive measure. In particular, it must be non-
empty.
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Afternoon session

1. Find all entire functions f(z) with the property that g(z)
def
= f(2z + z̄) is also entire.

Proof. The Cauchy-Riemann equations state that

∂xf(z) = f ′(z), ∂yf(z) = if ′(z) ⇒ ∂xf(z) = −i∂yf(z)

for any holomorphic function f , where z = x+ iy. If

g(z) = g(x+ iy) = f(2z + z̄) = f(3x+ iy),

then
∂xg(z) = 3f ′(3x+ iy) and − i∂yg(z) = f ′(3x+ iy),

so g holomorphic at x + iy implies f ′ = 0 at 3x + iy. Thus if g is entire, this holds for all
3x+ iy ∈ C so f ′ ≡ 0. This means f must be constant.

2. How many zeros does the polynomial

p(z) = z8 + 10z3 − 50z + 1

have in the right half-plane?

Proof. First, observe that all eight zeros of p must lie inside the disk of radius two around the
origin. Indeed, we may write p(z) = f1(z) + g1(z) where

f1(z) = z8 and g1(z) = 10z3 − 50z + 1

and apply Rouche’s theorem: on the circle {|z| = 2} we have |f1(z)| = 256 while |g1(z)| ≤
10|z|3 + 50|z| + 1 = 181, so p must have the same number of zeros inside this region as f1,
counting multiplicity, and this number is clearly 8 for f1.

Now let p(z) = f2(z) + g2(z) where

f2(z) = z8 − 50z + 1 and g2(z) = 10z3.

On the imaginary axis z = iy,

|g2(iy)| = 10|y|3 while |f2(iy)| = |y8 − 50iy + 1| ≥ max(y8 + 1, 50|y|).

Since
10|y|3 < y8 + 1 on [0, 1/3] ∪ [2,∞) and 10|y|3 < 50|y| on (0, 2],

we see that |g2(z)| < |f2(z)| along the imaginary axis. It is also straightforward to see this
inequality holds on a circle of sufficiently large radius R ≥ 2 by degree considerations. Thus
for a sufficiently large semi-circular region in the right half-plane, Rouche’s theorem implies
that p has the same number of zeros in this region as f2.

We now consider the location of the zeros of f2(z) = z8 − 50z + 1, using Rouche’s theorem a
few more times. Write

f3(z) = z8 − 50z, g3(z) = 1 so f2 = f3 + g3.
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It is clear that f3(z) = z(z7 − 50) has one zero at the origin and seven roots spaced evenly
about the circle of radius 501/7 around the origin, starting at the positive real axis. Thus f3
has three roots in the right half-plane, four in the left half-plane, and one in the middle.

On the circle {|z| = 1/2}, we have |f3(z)| ≥ 50|z| − |z|8 > 20 while |g3| = 1, so f2 = f3 + g3
and f3 both have one zero inside this region.

Along the imaginary axis {iy : |y| ≥ 1/2} outside this circle, |f3(iy)| = |y8−50iy| > 20 > |g3|,
so both f2 and f3 must have three zeros in the region {z : Re z > 0, 1/2 < |z| < R} for
sufficiently large R.

It remains to decide whether f2’s zero near the origin is in the right or left half-plane. Con-
sidering f2 as a function on the real line, we see that it must have a positive, real zero near
the origin because it changes sign between z = 0 and z = 1/2:

f2(0) = 1 > 0, f2(1/2) < −20 < 0 ⇒ f2(x) = 0 for some x ∈ (0, 1/2).

Thus f2 contains four zeros in the right half-plane, as does p.

3. Does there exist an analytic function f with an essential singularity at 0 such that f(z)+2f(z2)
has a removable singularity?

Proof. We claim this is not possible. If f has an isolated singularity at 0, we may write the
Laurent expansion of f around 0 as

f(z) =

∞∑
n=−∞

anz
n = · · ·+ a−1z

−1 + a0 + a1z + · · · .

Then f(z) + 2f(z2) has Laurent expansion

f(z) + 2f(z2) =

∞∑
n=−∞

bnz
n =

∞∑
n=−∞

anz
n +

∞∑
n=−∞

2anz
2n

= · · ·+ (a−2 + 2a−1)z−2 + a−1z
−1 + 3a0 + a1z

1 + (a2 + 2a1)z2 + · · · .

If this function has a removable singularity at 0, then all negative coefficients {bn : n < 0} in
the Laurent expansion must vanish. Since bn = an for odd n, this means an = 0 for all odd
n < 0. But for even coefficients,

b2n = a2n + 2an

so b2n = an = 0 implies a2n = 0. Thus all negative coefficients {an : n < 0} must vanish, by
induction on the highest power of 2 dividing n. This means f has a removable singularity at
0, not an essential singularity.

4. Let {fn : D → C}∞n=1 be a sequence of analytic functions such that fn(0) = 0 for all n ∈ N,
and Re fn(z)→ 0 uniformly on compact sets. Prove that Im fn(z)→ 0 uniformly on compact
sets.
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Proof. Consider the sequence of analytic functions gn = efn : D → C − {0}, which satisfy
gn(0) = 1. Since |gn| = eRe fn → e0 = 1 uniformly on compact sets, the sequence gn is
uniformly bounded in magnitude. We claim that the sequence gn converges uniformly on
compact sets to the constant function g = 1. If this were not true, then for some compact
K = {|z| ≤ 1− δ} ⊂ D and some ε > 0 we could find an infinite subsequence gnk

such that

sup
z∈K
|gnk

(z)− 1| ≥ ε.

The family gnk
is uniformly bounded onK, so by Montel’s theorem there must be a sub(sub)sequence

gnkj
converging uniformly to an analytic function g̃. But since |gn| → 1 uniformly, |g̃(z)| ≡ 1

identically so g̃ = eiθ must be a constant on the unit circle (e.g. by the open mapping the-
orem). But gn(0) = 1 for all n and 0 ∈ K, so we must have eiθ = 1. Then gnkj

in fact

converges uniformly to 1, contrary to our initial assumption. This proves our claim that
gn → 1 uniformly on compact subsets.

Now we claim that fn must converge to 0, uniformly on compact sets. As before fix a compact
set K = {|z| ≤ 1− δ} ⊂ D. For any ε > 0, we can choose sufficiently large N such that

|gn(z)− 1| < ε for all n ≥ N, z ∈ K.

Namely, gn must send K into on open ε-neighborhood of 1. The preimage of such a neighbor-
hood under the map z 7→ ez, for ε sufficiently small, is contained in a disjoint union of small
ε′-neighborhoods around the points 2πik, k ∈ Z. Thus fn must send K to such a disjoint
union, but since K is connected, its image must lie in a single connected component. More-
over, it must lie in the component containing 0, since fn(0) = 0. Thus fn sends K to a small
ε′ neighborhood of 0 for sufficiently large n. As ε, ε′ → 0 this proves uniform convergence of
fn → 0 as claimed. Thus Im fn → 0 uniformly on compact sets.

5. Use complex integration methods to compute

∫ ∞
0

xt

(x+ 1)(x+ 2)
dx, where t ∈ (0, 1).

Proof. Consider integrating the holomorphic function f(z) =
zt

(z + 1)(z + 2)
over the “key-

hole” contour shown below (the small circle has radius r):

R+ iε

R− iε x

y

γ4
−2 −1××

γ3

γ2

γ1
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We have

lim
ε→0
r→0
R→∞

∫
γ1

f(z)dz =

∫ ∞
0

xt

(x+ 1)(x+ 2)
dx =: I.

As we travel once around the origin to γ3, recalling that zt := et log z, we gain an extra 2πi in
the value of log z so

zt = et(log |z|+2πi) = |z|te2πit.

Thus

lim
ε→0
r→0
R→∞

∫
γ3

f(z)dz =

∫ 0

∞

e2πitxt

(x+ 1)(x+ 2)
dx = −e2πitI.

We claim the integrals along γ2 and γ4 go to 0 as R→∞, r → 0 respectively. Indeed∣∣∣∣ ∫
γ2

f(z)dz

∣∣∣∣ ≤ |γ2| · sup
γ2

|f(z)| ≤ 2πR · Rt

|R− 1||R− 2|
→ 0

as R→∞, since t < 1. Similarly along γ4∣∣∣∣ ∫
γ4

f(z)dz

∣∣∣∣ ≤ |γ4| · sup
γ4

|f(z)| ≤ 2πr · rt

|1− r||2− r|
→ 0

as r → 0.

Finally, we compute the residues of f at its poles, which occur at z = −1 and −2. We have

Resf (−1) = lim
z→−1

(z + 1)f(z) =
(−1)t

−1 + 2
= eπit, and

Resf (−2) = lim
z→−2

(z + 2)f(z) =
(−2)t

−2 + 1
= −2teπit.

By Cauchy’s integral formula

(1− 2t)eπit =
∑

Resf =
1

2πi
lim
ε→0
r→0
R→∞

∫
γ1+γ2+γ3+γ4

f(z)dz =
1

2πi
(1− e2πit)I,

which shows I = 2πi
(1− 2t)eπit

1− e2πit
=

π

sin(πt)
(2t − 1).
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