Morning session

1. Prove or disprove: If E is an open subset of \mathbb{R} with $m(E)=1$ then there is a finite union of intervals F containing E with $m(F)<1.1$.

Proof. Consider the countable union of open intervals $E=\cup_{n \geq 1}\left(n, n+1 / 2^{n}\right) \subset \mathbb{R}$. It is clear that $m(E)=\sum_{n \geq 1} 1 / 2^{n}=1$. However, if F is a finite union of intervals with $m(F)<\infty$, then F is bounded as a subset of \mathbb{R}, so F cannot contain E.
2. Let $f \in L_{1} \cap L_{4}$ (on some measure space). Prove that the function

$$
\begin{aligned}
{[1,4] } & \rightarrow \mathbb{R} \\
p & \mapsto\|f\|_{p}
\end{aligned}
$$

is continuous.
Proof. Let $N:[1,4] \rightarrow \mathbb{R}$ denote the given "norm" function. It suffices to prove $\tilde{N}(p)=$ $\|f\|_{p}^{p}=\int|f|^{p}$ is continuous, since then we have $N(p)=\exp (\log (\tilde{N}(p)) / p)$ is the composition of continuous functions. Let

$$
E=\{x:|f(x)| \leq 1\} \quad \text { and } \quad F=\{x:|f(x)|>1\}
$$

We first check that $\|f\|_{p}^{p}<\infty$ for all $p \in[1,4]$, so that \tilde{N} is well-defined. Indeed

$$
\int|f|^{p}=\int_{E}|f|^{p}+\int_{F}|f|^{p} \leq \int_{E}|f|+\int_{F}|f|^{4} \leq\|f\|_{1}+\|f\|_{4}^{4}<\infty
$$

Now to show continuity of \tilde{N} at $p \in[1,4]$, we must prove $\tilde{N}\left(p+\epsilon_{n}\right) \rightarrow \tilde{N}(p)$ for any sequence $\epsilon_{n} \rightarrow 0$ (for which $p+\epsilon_{n} \in[1,4]$). Given such a sequence, define

$$
g_{n}=|f|^{p+\epsilon_{n}}-|f|^{p} \quad \Rightarrow \quad\left\|g_{n}\right\|_{1} \geq\left|\tilde{N}\left(p+\epsilon_{n}\right)-\tilde{N}(p)\right|
$$

It is clear that $g_{n} \rightarrow 0$ pointwise, and what wish to prove is that $g_{n} \rightarrow 0$ in L_{1}. As $\int\left|g_{n}\right|=$ $\int_{E}\left|g_{n}\right|+\int_{F}\left|g_{n}\right|$, it suffices to check this on E and F separately. On E, the sequence g_{n} is dominated by $2|f|$:

$$
\left|g_{n}(x)\right| \leq|f(x)|^{p+\epsilon_{n}}+|f(x)|^{p} \leq 2|f(x)| \quad \text { for any } x \in E
$$

while of F, g_{n} is dominated by $2|f|^{4}$. Thus the limit of integrals goes to zero as claimed, by dominated convergence. This shows continuity of \tilde{N} as desired.
3. Find all $q \geq 1$ such that $f\left(x^{2}\right) \in L_{q}((0,1), m)$ for any $f(x) \in L_{4}((0,1), m)$.

Proof. If $q>2$, then $f(x)=x^{-1 / 2 q}$ is in L_{4} but $f\left(x^{2}\right)=x^{-1 / q}$ is not in L_{q}. Thus $q \leq 2$ for the given condition to hold. For $q=2$, consider the function

$$
f(x)=\frac{1}{x^{1 / 4}|\log (x / 2)|^{1 / 2}}
$$

We claim that $f \in L_{4}$ but $f\left(x^{2}\right) \notin L_{2}$. Indeed

$$
\int_{0}^{1} f(x)^{4} d x=\int_{0}^{1} \frac{d x}{x \log (x / 2)^{2}}=-\left.\frac{1}{\log (x / 2)}\right|_{0} ^{1}=\frac{1}{\log 2}
$$

while

$$
\int_{0}^{1} f\left(x^{2}\right)^{2} d x=\int_{0}^{1} \frac{d x}{x\left|\log \left(x^{2} / 2\right)\right|}=-\left.\frac{1}{2} \log \left|\log \left(x^{2} / 2\right)\right|\right|_{0} ^{1}=-\frac{1}{2} \log \log 2+\infty
$$

Finally, consider $1 \leq q<2$. Observe that by substitution $u=x^{2}$,

$$
\int_{0}^{1} f\left(x^{2}\right)^{q} d x=\int_{0}^{1} \frac{f(u)^{q}}{2 \sqrt{u}} d u
$$

and the given bounds on q imply that $\frac{2}{3} \leq \frac{2}{4-q}<1$. By applying Holder with conjugate norms $p_{1}=4 / q$ and $p_{2}=4 /(4-q)$,

$$
\begin{aligned}
\int_{0}^{1}\left|\frac{f(u)^{q}}{u^{1 / 2}}\right| d u & \leq\left\|f^{q}\right\|_{p_{1}} \cdot\left\|u^{-1 / 2}\right\|_{p_{2}} \\
& =\left(\int_{0}^{1} f(u)^{4} d u\right)^{q / 4}\left(\int_{0}^{1} u^{-r} d u\right)^{1-q / 4} \quad \text { where } r=\frac{p_{2}}{2}=\frac{2}{4-q}
\end{aligned}
$$

and these last two integrals are finite. Thus $1 \leq q<2$ gives the desired range.
4. Let

$$
\begin{aligned}
E & \subset\{(x, y): 0 \leq x \leq 1,0 \leq y \leq x\} \\
E_{x} & =\{y:(x, y) \in E\} \\
E^{y} & =\{x:(x, y) \in E\}
\end{aligned}
$$

and assume that $m\left(E_{x}\right) \geq x^{3}$ for any $x \in[0,1]$.
(a) Prove that there exists $y \in[0,1]$ such that $m\left(E^{y}\right) \geq \frac{1}{4}$.
(b) Prove that there exists $y \in[0,1]$ such that $m\left(E^{y}\right) \geq c$, where $c>1 / 4$ is a constant independent of E. Give an explicit value of c.

Proof. (a) Suppose for a contradiction that $m\left(E^{y}\right)<1 / 4$ for all $y \in[0,1]$. Then

$$
\int_{0}^{1} m\left(E^{y}\right) d y<\int_{0}^{1} \frac{1}{4} d y=\frac{1}{4}
$$

while by Fubini this integral is equal to

$$
\int_{0}^{1} m\left(E_{x}\right) d x \geq \int_{0}^{1} x^{3} d x=\frac{1}{4}
$$

This is a contradiction, so we must have $m\left(E^{y}\right) \geq 1 / 4$ for some y.
(b) Observe that

$$
\int_{0}^{1} m\left(E^{y}\right) d y \leq \int_{0}^{3 / 4} m\left(E^{y}\right) d y+\int_{3 / 4}^{1}(1-y) d y=\int_{0}^{3 / 4} m\left(E^{y}\right) d y+\frac{1}{32}
$$

since $E_{y} \subset\{x: y \leq x \leq 1\}$ so $m\left(E^{y}\right) \leq 1-y$. As observed in part (a) we must have $\int_{0}^{1} m\left(E^{y}\right) d y \geq 1 / 4$, so

$$
\int_{0}^{3 / 4} m\left(E^{y}\right) d y \geq \frac{1}{4}-\frac{1}{32}=\frac{7}{32}
$$

This implies the "average value" of $m\left(E^{y}\right)$ on this interval is at least $\frac{7 / 32}{3 / 4}=7 / 24$, so we may take $c=7 / 24$ using the same argument as in part (a).
5. Let $E \subset[0,1]$ be a measurable set, $m(E) \geq \frac{99}{100}$. Prove that there exists $x \in[0,1]$ such that for any $r \in(0,1)$

$$
m(E \cap(x-r, x+r)) \geq \frac{r}{4}
$$

Remark: One approach to this problem involves the Hardy-Littlewood maximal inequality
Proof. Let $f=\chi_{E^{c}}$, so the Hardy-Littlewood maximal function f^{*} is given by

$$
f^{*}(x)=\sup _{x \in B} \frac{1}{m(B)} \int_{B} f(y) d y=\sup _{x \in B} \frac{m\left(B \cap E^{c}\right)}{m(B)}=1-\inf _{x \in B} \frac{m(B \cap E)}{m(B)}
$$

where the supremum is taken over all balls (i.e. intervals) B containing x. It suffices to find some x satisfying $f^{*}(x) \leq 7 / 8$, since then

$$
\inf _{r \in(0,1)} \frac{m(E \cap(x-r, x+r))}{2 r}=\inf _{r \in(0,1)} \frac{m\left(B_{r} \cap E\right)}{m\left(B_{r}\right)} \geq \inf _{x \in B} \frac{m(B \cap E)}{m(B)} \geq \frac{1}{8}
$$

where $B_{r}(x)=(x-r, x+r)$ denotes the ball of radius r around x.
The Hardy-Littlewood maximal inequality states that for any $\alpha>0$,

$$
m\left(x: f^{*}(x)>\alpha\right) \leq \frac{3}{\alpha}\|f\|_{1}
$$

In our case

$$
\frac{3}{\alpha}\|f\|_{1}=\frac{3}{\alpha}(1-m(E)) \leq \frac{1}{\alpha} \frac{3}{100}
$$

Thus for $\alpha=7 / 8$,

$$
m\left(x: f^{*}(x)>7 / 8\right) \leq \frac{8}{7} \cdot \frac{3}{100}<1
$$

so the complement $\left\{x: f^{*}(x) \leq 7 / 8\right\}$ has positive measure. In particular, it must be nonempty.

Afternoon session

1. Find all entire functions $f(z)$ with the property that $g(z) \stackrel{\text { def }}{=} f(2 z+\bar{z})$ is also entire.

Proof. The Cauchy-Riemann equations state that

$$
\partial_{x} f(z)=f^{\prime}(z), \partial_{y} f(z)=i f^{\prime}(z) \quad \Rightarrow \quad \partial_{x} f(z)=-i \partial_{y} f(z)
$$

for any holomorphic function f, where $z=x+i y$. If

$$
g(z)=g(x+i y)=f(2 z+\bar{z})=f(3 x+i y)
$$

then

$$
\partial_{x} g(z)=3 f^{\prime}(3 x+i y) \quad \text { and } \quad-i \partial_{y} g(z)=f^{\prime}(3 x+i y)
$$

so g holomorphic at $x+i y$ implies $f^{\prime}=0$ at $3 x+i y$. Thus if g is entire, this holds for all $3 x+i y \in \mathbb{C}$ so $f^{\prime} \equiv 0$. This means f must be constant.
2. How many zeros does the polynomial

$$
p(z)=z^{8}+10 z^{3}-50 z+1
$$

have in the right half-plane?
Proof. First, observe that all eight zeros of p must lie inside the disk of radius two around the origin. Indeed, we may write $p(z)=f_{1}(z)+g_{1}(z)$ where

$$
f_{1}(z)=z^{8} \quad \text { and } \quad g_{1}(z)=10 z^{3}-50 z+1
$$

and apply Rouche's theorem: on the circle $\{|z|=2\}$ we have $\left|f_{1}(z)\right|=256$ while $\left|g_{1}(z)\right| \leq$ $10|z|^{3}+50|z|+1=181$, so p must have the same number of zeros inside this region as f_{1}, counting multiplicity, and this number is clearly 8 for f_{1}.
Now let $p(z)=f_{2}(z)+g_{2}(z)$ where

$$
f_{2}(z)=z^{8}-50 z+1 \quad \text { and } \quad g_{2}(z)=10 z^{3}
$$

On the imaginary axis $z=i y$,

$$
\left|g_{2}(i y)\right|=10|y|^{3} \quad \text { while } \quad\left|f_{2}(i y)\right|=\left|y^{8}-50 i y+1\right| \geq \max \left(y^{8}+1,50|y|\right)
$$

Since

$$
10|y|^{3}<y^{8}+1 \quad \text { on }[0,1 / 3] \cup[2, \infty) \quad \text { and } \quad 10|y|^{3}<50|y| \quad \text { on }(0,2]
$$

we see that $\left|g_{2}(z)\right|<\left|f_{2}(z)\right|$ along the imaginary axis. It is also straightforward to see this inequality holds on a circle of sufficiently large radius $R \geq 2$ by degree considerations. Thus for a sufficiently large semi-circular region in the right half-plane, Rouche's theorem implies that p has the same number of zeros in this region as f_{2}.
We now consider the location of the zeros of $f_{2}(z)=z^{8}-50 z+1$, using Rouche's theorem a few more times. Write

$$
f_{3}(z)=z^{8}-50 z, \quad g_{3}(z)=1 \quad \text { so } f_{2}=f_{3}+g_{3}
$$

It is clear that $f_{3}(z)=z\left(z^{7}-50\right)$ has one zero at the origin and seven roots spaced evenly about the circle of radius $50^{1 / 7}$ around the origin, starting at the positive real axis. Thus f_{3} has three roots in the right half-plane, four in the left half-plane, and one in the middle.
On the circle $\{|z|=1 / 2\}$, we have $\left|f_{3}(z)\right| \geq 50|z|-|z|^{8}>20$ while $\left|g_{3}\right|=1$, so $f_{2}=f_{3}+g_{3}$ and f_{3} both have one zero inside this region.
Along the imaginary axis $\{i y:|y| \geq 1 / 2\}$ outside this circle, $\left|f_{3}(i y)\right|=\left|y^{8}-50 i y\right|>20>\left|g_{3}\right|$, so both f_{2} and f_{3} must have three zeros in the region $\{z: \operatorname{Re} z>0,1 / 2<|z|<R\}$ for sufficiently large R.
It remains to decide whether f_{2} 's zero near the origin is in the right or left half-plane. Considering f_{2} as a function on the real line, we see that it must have a positive, real zero near the origin because it changes sign between $z=0$ and $z=1 / 2$:

$$
f_{2}(0)=1>0, \quad f_{2}(1 / 2)<-20<0 \quad \Rightarrow \quad f_{2}(x)=0 \text { for some } x \in(0,1 / 2)
$$

Thus f_{2} contains four zeros in the right half-plane, as does p.
3. Does there exist an analytic function f with an essential singularity at 0 such that $f(z)+2 f\left(z^{2}\right)$ has a removable singularity?

Proof. We claim this is not possible. If f has an isolated singularity at 0 , we may write the Laurent expansion of f around 0 as

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}=\cdots+a_{-1} z^{-1}+a_{0}+a_{1} z+\cdots
$$

Then $f(z)+2 f\left(z^{2}\right)$ has Laurent expansion

$$
\begin{aligned}
f(z)+2 f\left(z^{2}\right) & =\sum_{n=-\infty}^{\infty} b_{n} z^{n}=\sum_{n=-\infty}^{\infty} a_{n} z^{n}+\sum_{n=-\infty}^{\infty} 2 a_{n} z^{2 n} \\
& =\cdots+\left(a_{-2}+2 a_{-1}\right) z^{-2}+a_{-1} z^{-1}+3 a_{0}+a_{1} z^{1}+\left(a_{2}+2 a_{1}\right) z^{2}+\cdots
\end{aligned}
$$

If this function has a removable singularity at 0 , then all negative coefficients $\left\{b_{n}: n<0\right\}$ in the Laurent expansion must vanish. Since $b_{n}=a_{n}$ for odd n, this means $a_{n}=0$ for all odd $n<0$. But for even coefficients,

$$
b_{2 n}=a_{2 n}+2 a_{n}
$$

so $b_{2 n}=a_{n}=0$ implies $a_{2 n}=0$. Thus all negative coefficients $\left\{a_{n}: n<0\right\}$ must vanish, by induction on the highest power of 2 dividing n. This means f has a removable singularity at 0 , not an essential singularity.
4. Let $\left\{f_{n}: \mathbb{D} \rightarrow \mathbb{C}\right\}_{n=1}^{\infty}$ be a sequence of analytic functions such that $f_{n}(0)=0$ for all $n \in \mathbb{N}$, and $\operatorname{Re} f_{n}(z) \rightarrow 0$ uniformly on compact sets. Prove that $\operatorname{Im} f_{n}(z) \rightarrow 0$ uniformly on compact sets.

Proof. Consider the sequence of analytic functions $g_{n}=e^{f_{n}}: \mathbb{D} \rightarrow \mathbb{C}-\{0\}$, which satisfy $g_{n}(0)=1$. Since $\left|g_{n}\right|=e^{\operatorname{Re} f_{n}} \rightarrow e^{0}=1$ uniformly on compact sets, the sequence g_{n} is uniformly bounded in magnitude. We claim that the sequence g_{n} converges uniformly on compact sets to the constant function $g=1$. If this were not true, then for some compact $K=\{|z| \leq 1-\delta\} \subset \mathbb{D}$ and some $\epsilon>0$ we could find an infinite subsequence $g_{n_{k}}$ such that

$$
\sup _{z \in K}\left|g_{n_{k}}(z)-1\right| \geq \epsilon
$$

The family $g_{n_{k}}$ is uniformly bounded on K, so by Montel's theorem there must be a sub(sub)sequence $g_{n_{k_{j}}}$ converging uniformly to an analytic function \tilde{g}. But since $\left|g_{n}\right| \rightarrow 1$ uniformly, $|\tilde{g}(z)| \equiv 1$ identically so $\tilde{g}=e^{i \theta}$ must be a constant on the unit circle (e.g. by the open mapping theorem). But $g_{n}(0)=1$ for all n and $0 \in K$, so we must have $e^{i \theta}=1$. Then $g_{n_{k_{j}}}$ in fact converges uniformly to 1 , contrary to our initial assumption. This proves our claim that $g_{n} \rightarrow 1$ uniformly on compact subsets.
Now we claim that f_{n} must converge to 0 , uniformly on compact sets. As before fix a compact set $K=\{|z| \leq 1-\delta\} \subset \mathbb{D}$. For any $\epsilon>0$, we can choose sufficiently large N such that

$$
\left|g_{n}(z)-1\right|<\epsilon \quad \text { for all } n \geq N, z \in K
$$

Namely, g_{n} must send K into on open ϵ-neighborhood of 1 . The preimage of such a neighborhood under the map $z \mapsto e^{z}$, for ϵ sufficiently small, is contained in a disjoint union of small ϵ^{\prime}-neighborhoods around the points $2 \pi i k, k \in \mathbb{Z}$. Thus f_{n} must send K to such a disjoint union, but since K is connected, its image must lie in a single connected component. Moreover, it must lie in the component containing 0 , since $f_{n}(0)=0$. Thus f_{n} sends K to a small ϵ^{\prime} neighborhood of 0 for sufficiently large n. As $\epsilon, \epsilon^{\prime} \rightarrow 0$ this proves uniform convergence of $f_{n} \rightarrow 0$ as claimed. Thus $\operatorname{Im} f_{n} \rightarrow 0$ uniformly on compact sets.
5. Use complex integration methods to compute $\int_{0}^{\infty} \frac{x^{t}}{(x+1)(x+2)} d x$, where $t \in(0,1)$.

Proof. Consider integrating the holomorphic function $f(z)=\frac{z^{t}}{(z+1)(z+2)}$ over the "keyhole" contour shown below (the small circle has radius r):

We have

$$
\lim _{\substack{\epsilon \rightarrow 0 \\ r \rightarrow 0 \\ R \rightarrow \infty}} \int_{\gamma_{1}} f(z) d z=\int_{0}^{\infty} \frac{x^{t}}{(x+1)(x+2)} d x=: I
$$

As we travel once around the origin to γ_{3}, recalling that $z^{t}:=e^{t \log z}$, we gain an extra $2 \pi i$ in the value of $\log z$ so

$$
z^{t}=e^{t(\log |z|+2 \pi i)}=|z|^{t} e^{2 \pi i t}
$$

Thus

$$
\lim _{\substack{\epsilon \rightarrow 0 \\ r \rightarrow 0 \\ R \rightarrow \infty}} \int_{\gamma_{3}} f(z) d z=\int_{\infty}^{0} \frac{e^{2 \pi i t} x^{t}}{(x+1)(x+2)} d x=-e^{2 \pi i t} I
$$

We claim the integrals along γ_{2} and γ_{4} go to 0 as $R \rightarrow \infty, r \rightarrow 0$ respectively. Indeed

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq\left|\gamma_{2}\right| \cdot \sup _{\gamma_{2}}|f(z)| \leq 2 \pi R \cdot \frac{R^{t}}{|R-1||R-2|} \rightarrow 0
$$

as $R \rightarrow \infty$, since $t<1$. Similarly along γ_{4}

$$
\left|\int_{\gamma_{4}} f(z) d z\right| \leq\left|\gamma_{4}\right| \cdot \sup _{\gamma_{4}}|f(z)| \leq 2 \pi r \cdot \frac{r^{t}}{|1-r||2-r|} \rightarrow 0
$$

as $r \rightarrow 0$.
Finally, we compute the residues of f at its poles, which occur at $z=-1$ and -2 . We have

$$
\begin{gathered}
\operatorname{Res}_{f}(-1)=\lim _{z \rightarrow-1}(z+1) f(z)=\frac{(-1)^{t}}{-1+2}=e^{\pi i t}, \quad \text { and } \\
\operatorname{Res}_{f}(-2)=\lim _{z \rightarrow-2}(z+2) f(z)=\frac{(-2)^{t}}{-2+1}=-2^{t} e^{\pi i t}
\end{gathered}
$$

By Cauchy's integral formula

$$
\left(1-2^{t}\right) e^{\pi i t}=\sum \operatorname{Res}_{f}=\frac{1}{2 \pi i} \lim _{\substack{\epsilon \rightarrow 0 \\ R \rightarrow 0 \\ R \rightarrow \infty}} \int_{\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}} f(z) d z=\frac{1}{2 \pi i}\left(1-e^{2 \pi i t}\right) I,
$$

which shows $I=2 \pi i \frac{\left(1-2^{t}\right) e^{\pi i t}}{1-e^{2 \pi i t}}=\frac{\pi}{\sin (\pi t)}\left(2^{t}-1\right)$.

