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Morning session

1. Prove or disprove: If E is an open subset of R with m(E) = 1 then there is a finite union of
intervals F' containing E with m(F) < 1.1.

Proof. Consider the countable union of open intervals E = U,>1(n,n+1/2") C R. It is clear
that m(E) = >, 1/2" = 1. However, if F' is a finite union of intervals with m(F) < oo,
then F is bounded as a subset of R, so F' cannot contain E. O

2. Let f € L1 N Ly (on some measure space). Prove that the function
1,4 - R
=l £l

is continuous.

Proof. Let N: [1,4 — R denote the given “norm” function. It suffices to prove N(p) =
[£II5 = [ |fIP is continuous, since then we have N(p) = exp(log(N(p))/p) is the composition
of continuous functions. Let

E={x:|f(z)| <1} and F={z:|f(x)]>1}.

We first check that || f||b < oo for all p € [1,4], so that N is well-defined. Indeed

Jise=[ise+ [ir< [in+ [ i<+ <oe.

Now to show continuity of N at p € [1, 4], we must prove N (p+en) — N (p) for any sequence
€n, — 0 (for which p + ¢, € [1,4]). Given such a sequence, define

gn = fIFX = 1fP = lgall 2 IN(p + ) = N(p)I.

It is clear that g, — 0 pointwise, and what wish to prove is that g, — 0 in Ly. As [ |g,| =
S5 lgnl + [ |gnl, it suffices to check this on E and F' separately. On E, the sequence g, is
dominated by 2|f|:

lgn(@)] < [f(@) "7 +|f(@)|” < 2|f(2)] for any x € E,

while of F, g,, is dominated by 2|f|*. Thus the limit of integrals goes to zero as claimed, by
dominated convergence. This shows continuity of N as desired. O

3. Find all ¢ > 1 such that f(z?) € Ly((0,1),m) for any f(z) € L4((0,1),m).

Proof. 1f ¢ > 2, then f(z) = 27/ is in Ly but f(2?) = 279 is not in L,. Thus ¢ < 2 for
the given condition to hold. For ¢ = 2, consider the function

1
o) = g/ 72
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We claim that f € Ly but f(2?) € Ly. Indeed

1 4, 1 dx _ 1
/o f=) dx*/o Tlog(@/22 ~ log(z/2)

! 1

0 - log2’

while

1

1 1
d 1 1
/f(ac2)2dx:/ 7x:—§log|log(x2/2)| :—510g10g2+oo.
0 0

a|log(x?/2)|

0

Finally, consider 1 < ¢ < 2. Observe that by substitution u = 22,

' ag _ [ f@)e
/0 f(x*)lde = . v du,
2

and the given bounds on ¢ imply that % < 1 < 1. By applying Holder with conjugate
norms p1 = 4/g and ps = 4/(4 — q),

/1 f(u)?

du < || fpy - llu™2p,

1 . q/4 1 1—q/4 D2 9
= u) du / u_rdu> where r = == = ——
(f rra) (] -

and these last two integrals are finite. Thus 1 < g < 2 gives the desired range. O

wl/2

4. Let

Ec{(x,y):0<2z<1,0<y<z}
E, ={y:(z,y) € B}
EY ={x:(z,y) € E}

and assume that m(E,) > 2 for any z € [0, 1].

(a) Prove that there exists y € [0, 1] such that m(EY) >

1
Z.
(b) Prove that there exists y € [0,1] such that m(EY) > ¢, where ¢ > 1/4 is a constant
independent of E. Give an explicit value of c.

Proof. (a) Suppose for a contradiction that m(EY) < 1/4 for all y € [0,1]. Then

1 1 1 1
EY “dy ==
/0 m( )dy</0 W=

while by Fubini this integral is equal to

1 1 1
/ m(E;)dz > / ide = =,
0 0 4

This is a contradiction, so we must have m(EY) > 1/4 for some y.
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(b) Observe that

1 3/4 1 3/4 1
/ m(EV)dy < / m(EY)dy + / (1 - y)dy = / m(EV)dy +
0 0 3/4 0 32

since By, C {x:y <a <1} som(EY) <1—y . As observed in part (a) we must have

fol m(EY)dy > 1/4, so
3/4 1 1 7
a7
; 132 32

This implies the “average value” of m(EY) on this interval is at least 73/ /342 =7/24, so we

may take ¢ = 7/24 using the same argument as in part (a).
O

5. Let E C [0,1] be a measurable set, m(E) > 2% Prove that there exists z € [0,1] such that
for any r € (0,1)
m(EN(z—rx+r))>

Hk\ﬁ

Remark: One approach to this problem involves the Hardy-Littlewood maximal inequality

Proof. Let f = xpge, so the Hardy-Littlewood maximal function f* is given by

L m(B N E°) _ m(BNE)
@)= sup i [ty = sup TEEE) <1 g MIEE

where the supremum is taken over all balls (i.e. intervals) B containing x. It suffices to find
some z satisfying f*(z) < 7/8, since then
m(EN(z—r,x+7)) m(B, NE)

: . r .. mBNE) _ 1
inf = inf > inf > —
re(0,1) 2r re(0,1) m(BT) z€B m(B) 8’

where B,.(z) = (x — r,x 4+ r) denotes the ball of radius r around z.

The Hardy-Littlewood maximal inequality states that for any a > 0,

m(a: £(2) > 0) < 2| f]h.

In our case

3 1 3
— =—1-m(F)) < ——.
7l = 20— m(B) <~
Thus for a = 7/8,
8 3
* /8 <=-—<1
m(@: f1(2) > 7/8) < = 155 <
so the complement {x : f*(x) < 7/8} has positive measure. In particular, it must be non-
empty. O
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Afternoon session

1. Find all entire functions f(z) with the property that g(z) Lef f(2z + 2) is also entire.

Proof. The Cauchy-Riemann equations state that
Ouf(2) = f'(2), Oyf(2) =if'(z) = 0uf(2) = —i0yf(2)

for any holomorphic function f, where z = = + iy. If

9(z) = g(z +iy) = f(22 + 2) = f(Bz + 1),

then
0:9(z) =3f 3z +1iy) and —idyg(z) = f'(3x + iy),

so g holomorphic at x + 7y implies f/ = 0 at 3z + ¢y. Thus if g is entire, this holds for all
3z +iy € C so f/ =0. This means f must be constant. O

2. How many zeros does the polynomial
p(2) = 2% +102% — 502 + 1

have in the right half-plane?

Proof. First, observe that all eight zeros of p must lie inside the disk of radius two around the
origin. Indeed, we may write p(z) = f1(z) + g1(z) where

fi(z) =2% and g1(2) = 102° — 502 + 1

and apply Rouche’s theorem: on the circle {|z| = 2} we have |f1(z)| = 256 while |g1(2)| <
10|z|> 4 50|z| + 1 = 181, so p must have the same number of zeros inside this region as fi,
counting multiplicity, and this number is clearly 8 for f;.

Now let p(z) = fa(z) + g2(2) where
f2(2) = 2% =502 +1 and go(z) = 102°.
On the imaginary axis z = iy,
l92(iy)| = 10ly°  while | fa(iy)| = |y* — 50y + 1| > max(y® + 1,50]y]).

Since
10ly? <4®+1 on[0,1/3]U[2,00) and 10|y|* < 50|y| on (0,2],

we see that |g2(2)| < |f2(2)] along the imaginary axis. It is also straightforward to see this
inequality holds on a circle of sufficiently large radius R > 2 by degree considerations. Thus
for a sufficiently large semi-circular region in the right half-plane, Rouche’s theorem implies
that p has the same number of zeros in this region as fs.

We now consider the location of the zeros of fo(z) = 28 — 50z + 1, using Rouche’s theorem a
few more times. Write

f3(z) =2 =50z, g3(2) =1 so fo=f3+gs.



Analysis Qualifying Review, solutions Harry Richman
January 11, 2014 Summer 2015

It is clear that f3(z) = 2(2” — 50) has one zero at the origin and seven roots spaced evenly
about the circle of radius 50'/7 around the origin, starting at the positive real axis. Thus f3
has three roots in the right half-plane, four in the left half-plane, and one in the middle.

On the circle {|z| = 1/2}, we have |f3(2)| > 50|z| — |2|® > 20 while |g3| =1, so fo = f3 + g3
and f3 both have one zero inside this region.

Along the imaginary axis {iy : |y| > 1/2} outside this circle, | f3(iy)| = |y® —50iy| > 20 > g3,
so both fo and f3 must have three zeros in the region {z : Re z > 0,1/2 < |z| < R} for
sufficiently large R.

It remains to decide whether fs5’s zero near the origin is in the right or left half-plane. Con-
sidering fy as a function on the real line, we see that it must have a positive, real zero near
the origin because it changes sign between z =0 and z = 1/2:

f2(00=1>0, f2(1/2)<—-20<0 = fa(z)=0 for some x € (0,1/2).
Thus f5 contains four zeros in the right half-plane, as does p. O

3. Does there exist an analytic function f with an essential singularity at 0 such that f(2)+2f(2?)
has a removable singularity?

Proof. We claim this is not possible. If f has an isolated singularity at 0, we may write the
Laurent expansion of f around 0 as

f(z)= Z 2" = 4a 1z V +ag+arz+--.
Then f(z) + 2f(2?) has Laurent expansion

oo o o
Z bp2" = Z apz" + Z 2a,2°"

n=—oo n=—oo n=—oo

=+ (a_2+2a_1)z" 2 +a_127" +3ag +arz' + (a2 +2a1)z* + - -

F(2) +2f(2%)

If this function has a removable singularity at 0, then all negative coefficients {b,, : n < 0} in
the Laurent expansion must vanish. Since b,, = a,, for odd n, this means a,, = 0 for all odd
n < 0. But for even coefficients,

b2n = agp + 2an

0 ba,, = a, = 0 implies ag,, = 0. Thus all negative coefficients {a, : n < 0} must vanish, by
induction on the highest power of 2 dividing n. This means f has a removable singularity at
0, not an essential singularity. O

4. Let {fn: D — C}2, be a sequence of analytic functions such that f,(0) = 0 for all n € N,
and Re f,,(z) — 0 uniformly on compact sets. Prove that Im f,(2) — 0 uniformly on compact
sets.
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Proof. Consider the sequence of analytic functions g, = ef»: D — C — {0}, which satisfy
gn(0) = 1. Since |g,| = ef¢/» — € = 1 uniformly on compact sets, the sequence g, is
uniformly bounded in magnitude. We claim that the sequence g, converges uniformly on
compact sets to the constant function g = 1. If this were not true, then for some compact
K ={]z] <1-6} C D and some € > 0 we could find an infinite subsequence g,, such that

sup |g7lk (Z) - 1| > €.
zeK

The family gy, is uniformly bounded on K, so by Montel’s theorem there must be a sub(sub)sequence
Gni, converging uniformly to an analytic function §. But since |g,,| — 1 uniformly, |§(z)| =1

identically so § = € must be a constant on the unit circle (e.g. by the open mapping the-
orem). But g,(0) = 1 for all n and 0 € K, so we must have e = 1. Then 9n,,, in fact
converges uniformly to 1, contrary to our initial assumption. This proves our claim that

gn — 1 uniformly on compact subsets.

Now we claim that f,, must converge to 0, uniformly on compact sets. As before fix a compact
set K ={|z|] <1—0} CD. For any € > 0, we can choose sufficiently large N such that

lgn(z) —1| <€ foralln >N, z € K.

Namely, g, must send K into on open e-neighborhood of 1. The preimage of such a neighbor-
hood under the map z — e*, for e sufficiently small, is contained in a disjoint union of small
€/-neighborhoods around the points 27wik, k € Z. Thus f, must send K to such a disjoint
union, but since K is connected, its image must lie in a single connected component. More-
over, it must lie in the component containing 0, since f,,(0) = 0. Thus f, sends K to a small
¢’ neighborhood of 0 for sufficiently large n. As €, ¢’ — 0 this proves uniform convergence of
fn — 0 as claimed. Thus Im f,, — 0 uniformly on compact sets. O

t

(oo}
T
5. Use complex integration methods to compute /
0 (ZE + 1

—d here t € (0,1).
@1 2) x, where t € (0,1)

Zt

Proof. Consider integrating the holomorphic function f(z) = CESErS)]

over the “key-

hole” contour shown below (the small circle has radius 7):
Yy

2

_9 _11 Y1 R+ ie

C .
V4 V3 R — i€ r
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We have
i / F(2)d / h ot do =: 1
lim z)dz = ——dz =: 1.
) v @I +2)
R—o0

As we travel once around the origin to s, recalling that 2! := e?1°8% we gain an extra 27 in
the value of log z so

2t = et(log|z|+27ri) — |Z|t€2ﬂ-it.
Thus
0 e2mit pt it
lim / F(2)dz :/ S " ———_0
R—o0

We claim the integrals along v and v4 go to 0 as R — oo, r — 0 respectively. Indeed

Rt
F(2)dz| < sl - sup | £(2)] < 27R - —————— -0
‘ Y2 Y2 |R_1||R_2|
as R — oo, since ¢t < 1. Similarly along 74
-t
f(z)dz| < |va| -sup|f(2)| < 27r  ———— — 0
‘ - Y [1—r[[2 -7
asr — 0.
Finally, we compute the residues of f at its poles, which occur at z = —1 and —2. We have
Resf(—1) = lim (z+1)f(z) = (=1 _ e™  and
! 21 142 ’
Resf(—2) = lim (z +2)f(z) = (=2)° _ gt it
! 2——2 —2+1 '
By Cauchy’s integral formula
(1 —2%e™ = ZResf = L lim / f(z)dz = L(1 — e,
2mi 538 Y1+v2+v3+74 2mi
R—o0
1— 2t it
which shows T = 2ri b =200 T (o0 gy O
1 — e2mit sin(7t)



