Morning session

1. Let f be a continuously differentiable function on \mathbb{R}. Assume there exist constants $a, b \in \mathbb{R}$ such that

$$
f(x) \rightarrow a, \quad f^{\prime}(x) \rightarrow b \quad \text { as } x \rightarrow \infty
$$

Prove or give a counterexample: b must be zero.
Proof. We claim b must be zero. Indeed for any $\epsilon>0$ we may choose N such that

$$
|f(x)-a|<\epsilon \quad \text { and } \quad\left|f^{\prime}(x)-b\right|<\epsilon \quad \text { for all } x \geq N
$$

Then for any $M>0$

$$
\left|\int_{N}^{N+M} f^{\prime}(x) d x\right|=|f(N+M)-f(N)|<2 \epsilon
$$

and

$$
\left|\int_{N}^{N+M}\left(b-f^{\prime}(x)\right) d x\right| \leq \int_{N}^{N+M}\left|f^{\prime}(x)-b\right| d x<M \epsilon
$$

while the sum of these integrals is $\int_{N}^{N+M} b d x=M b$. Thus $|b|<\epsilon+2 \epsilon / M$, so as $\epsilon \rightarrow 0$ this implies $b=0$ as claimed.
2. Using techniques of real analysis (as opposed to complex analysis) show that

$$
\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\sin (x)}{x} d x=\frac{\pi}{2}
$$

Proof. Observe that

$$
\int_{0}^{\infty} e^{-x t} d t=\frac{1}{x}
$$

so applying Fubini's theorem we have

$$
\begin{aligned}
\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\sin (x)}{x} d x & =\lim _{R \rightarrow \infty} \int_{0}^{R}\left(\int_{0}^{\infty} e^{-x t} d t\right) \sin (x) d x \\
& =\int_{0}^{\infty}\left(\lim _{R \rightarrow \infty} \int_{0}^{R} e^{-x t} \sin (x) d x\right) d t
\end{aligned}
$$

To evaluate the inner integral we use integration by parts:

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x t} \sin (x) d x & =-\left.e^{-x t} \cos (x)\right|_{0} ^{\infty}-t \int_{0}^{\infty} e^{-x t} \cos (x) d x \\
& =1-\left.t e^{-x t} \sin (x)\right|_{0} ^{\infty}-t^{2} \int_{0}^{\infty} e^{-x t} \sin (x) d x \\
& =1-t^{2} \int_{0}^{\infty} e^{-x t} \sin (x) d x
\end{aligned}
$$

so

$$
\lim _{R \rightarrow \infty} \int_{0}^{R} e^{-x t} \sin (x) d x=\frac{1}{1+t^{2}}
$$

Then

$$
\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\sin (x)}{x} d x=\int_{0}^{\infty}\left(\frac{1}{1+t^{2}}\right) d t=\left.\arctan (t)\right|_{0} ^{\infty}=\frac{\pi}{2}
$$

3. Let f be a measurable function on a measure space (X, μ), where μ is a finite measure. Suppose there are constants $K>0$ and $p>1$ such that

$$
\mu\{x \in X:|f(x)|>M\}<\frac{K}{M^{p}} \quad \text { for all } M>0
$$

Prove that f is integrable.

Proof. For any $M>0$ we may write the above expression as an integral of the characteristic function

$$
\int_{X} \chi(M<|f(x)|) d x=\mu\{x \in X:|f(x)|>M\}<\frac{K}{M^{p}}
$$

and by assumption that μ is a finite measure we also have the trivial bound

$$
\int_{X} \chi(M<|f(x)|) d x \leq \mu(X)
$$

By application of Tonelli's theorem

$$
\begin{aligned}
\int_{X}|f(x)| d x & =\int_{X} \int_{0}^{\infty} \chi(y<|f(x)|) d y d x \\
& =\int_{0}^{\infty} \int_{X} \chi(y<|f(x)|) d x d y \\
& \leq \int_{0}^{1} \mu(X)+\int_{1}^{\infty} \frac{K}{y^{p}} d y=\mu(X)+\frac{K}{p-1}<\infty
\end{aligned}
$$

Thus f is integrable.
4. Let E be a measurable subset of $[0,1]$. Assume there is a constant $\alpha>0$ such that

$$
m(E \cap I) \geq \alpha m(I) \quad \text { for all intervals } I \subset[0,1]
$$

Prove that $m(E)=1$.
Proof. Since $m(I)=m(I \backslash E)+m(E \cap I)$ the above condition implies that

$$
m(I \backslash E) \leq(1-\alpha) m(I) \quad \text { for all intervals } I
$$

Consider the complement E^{c}, which is measurable since E is. By definition of the Lebesgue measure, for any $\epsilon>0$ we can find a finite collection of disjoint intervals I_{k} such that

$$
E^{c} \subset \bigsqcup_{k} I_{k} \quad \text { and } \quad m\left(E^{c}\right) \leq \sum_{k} m\left(I_{k}\right) \leq m\left(E^{c}\right)+\epsilon
$$

Then we have $E^{c}=\bigsqcup_{k}\left(I_{k} \cap E^{c}\right)=\bigsqcup_{k}\left(I_{k} \backslash E\right)$, so

$$
m\left(E^{c}\right)=\sum_{k} m\left(I_{k} \backslash E\right) \leq(1-\alpha) \sum_{k} m\left(I_{k}\right) \leq(1-\alpha) m\left(E^{c}\right)+(1-\alpha) \epsilon
$$

As $\epsilon \rightarrow 0$, this implies $0 \leq-\alpha m\left(E^{c}\right)$ so we must have $m\left(E^{c}\right)=0$. Thus $m(E)=1$ as desired.
5. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of non-negative measurable functions on a measure space (X, μ), where μ is a finite measure. Assume that f_{n} converges almost everywhere to an integrable function f.
(a) Show by example that in general $\lim _{n \rightarrow \infty} \int f_{n} d \mu$ may be infinite.
(b) Suppose $\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu$. Prove that $f_{n} \rightarrow f$ in L_{1}, that is

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| d \mu=0
$$

Proof. (a) Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ (with the Lebesgue measure) defined by

$$
f_{n}(x)= \begin{cases}n^{2} & \text { if } 0<x<1 / n \\ 0 & \text { otherwise }\end{cases}
$$

which converges pointwise to the function $f=0$. We have

$$
\int_{[0,1]} f_{n} d \mu=n \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

(b) For each $n \geq 1$, define $g_{n}=\max \left(f_{n}-f, 0\right)$ and $h_{n}=\min \left(f_{n}-f, 0\right)$ so that

$$
f_{n}-f=g_{n}+h_{n} \quad \text { and } \quad\left|f_{n}-f\right|=g_{n}-h_{n}=\left|g_{n}\right|+\left|h_{n}\right|
$$

It is clear that both sequences g_{n} and h_{n} converge to 0 a.e. Since f_{n} and f are nonnegative, $\left|h_{n}\right| \leq|f|$ so by dominated convergence

$$
\lim _{n \rightarrow \infty} \int\left|h_{n}\right| d \mu=\int \lim _{n \rightarrow \infty}\left|h_{n}\right| d \mu=0
$$

Then since $\int\left|f_{n}-f\right| d \mu=\int\left|g_{n}\right| d \mu+\int\left|h_{n}\right| d \mu$, it suffices to show that $\int\left|g_{n}\right| d \mu \rightarrow 0$. But we are given that

$$
\lim _{n \rightarrow \infty} \int\left(f_{n}-f\right) d \mu=\lim _{n \rightarrow \infty} \int\left(g_{n}+h_{n}\right) d \mu=0
$$

so $\lim _{n \rightarrow \infty} \int g_{n} d \mu=\lim _{n \rightarrow \infty} \int\left|g_{n}\right| d \mu=0$ as desired.

Afternoon session

1. Let Δ denote the unit disk $\{z \in \mathbb{C}:|z|<1\}$, let H denote the right half-plane $\{z \in \mathbb{C}$: $\operatorname{Re} z>0\}$ and let f be an analytic function mapping H into Δ and satisfying $f(5)=0$. Based on the given information, what are you able to say about $f^{\prime}(5)$?

Proof. Observe that the möbius transformation

$$
g(z)=\frac{z-5}{z+5}
$$

is an analytic isomorphism from H to Δ sending 5 to 0 , such that

$$
g^{\prime}(5)=\frac{10}{(5+5)^{2}}=\frac{1}{10}
$$

We may factor the given $f: H \rightarrow \Delta$ as a composition $h \circ g$, (namely $h=f \circ g^{-1}: \Delta \rightarrow \Delta$) so that $h(0)=0$ and $f^{\prime}(5)=h^{\prime}(g(5)) g^{\prime}(5)=h^{\prime}(0) / 10$. By Schwarz-Pick

$$
\left|h^{\prime}(z)\right| \leq \frac{1-|h(z)|^{2}}{1-|z|^{2}} \Rightarrow\left|h^{\prime}(0)\right| \leq 1
$$

Thus we have $\left|f^{\prime}(5)\right| \leq 1 / 10$.
For any $\alpha \in \bar{\Delta}=\{z:|z| \leq 1\}$, the function $f=\alpha g$ satisfies the given hypotheses, and has $f^{\prime}(5)=\alpha / 10$. So the above condition is the only constraint on the value $f^{\prime}(5)$.
2. Let $f=u+i v$ be an entire function with the property that $\left(u^{2}\right)_{x x}+\left(u^{2}\right)_{y y}$ vanishes identically along the real axis. (The subscripts denote partial derivatives.) What can you conclude about $f ?$

Proof. Along the real axis, we have

$$
\begin{aligned}
\left(u^{2}\right)_{x x}+\left(u^{2}\right)_{y y} & =\left(2 u u_{x}\right)_{x}+\left(2 u u_{y}\right)_{y}=2\left(u u_{x x}+\left(u_{x}\right)^{2}\right)+2\left(u u_{y y}+\left(u_{y}\right)^{2}\right) \\
& =2 u\left(u_{x x}+u_{y y}\right)+2\left(u_{x}^{2}+u_{y}^{2}\right)=0
\end{aligned}
$$

Since f is entire, the real and imaginary parts u, v are both harmonic, so $u_{x x}+u_{y y}=0$ on the entire domain. Thus the above equality implies

$$
\left(u_{x}\right)^{2}+\left(u_{y}\right)^{2}=0 \quad \Rightarrow \quad u_{x}=u_{y}=0
$$

along the real axis, since both u_{x} and u_{y} are real-valued. Thus u is constant along the real axis, and by Cauchy-Riemann $\left(v_{x}=-u_{y}=0\right) v$ is also constant. Thus f is constant along the real axis, so its unique analytic continuation to the complex plane is constant as well.
3. Find all solutions of $\cos (z)=1+100 z^{2}$ in the unit disk $|z|<1$.

Proof. Note that finding solutions to the given equation is equivalent to finding zeros of the function $f(z)=100 z^{2}+1-\cos (z)$. Taking the Taylor expansion of $\cos (z)$ around 0 , we have

$$
f(z)=100.5 z^{2}+(\text { higher-order terms })
$$

so f has a zero of multiplicity 2 at $z=0$.
This is in fact the only zero of f in the unit disk, which we prove using Rouche's theorem. For z in the closed unit disk we have in particular that $|\operatorname{Im} z| \leq 1$, so

$$
|1-\cos (z)| \leq 1+|\cos (z)| \leq 1+|\cosh (\operatorname{Im} z)| \leq 1+\frac{e+e^{-1}}{2}<3
$$

while $\left|100 z^{2}\right|=100$ on the boundary of the disk. Thus we have the strict inequality

$$
|1-\cos (z)|<\left|100 z^{2}\right|
$$

on the boundary of this region, so $f(z)$ and $100 z^{2}$ must have the same number of zeros, counted with multiplicity, in the interior. This zero-count is clearly 2 for the function $100 z^{2}$, so we have already found all zeros of f as claimed.
4. Let S denote the strip $\{z=x+i y: 0 \leq y \leq 1\}$. Suppose that f is analytic in a neighborhood of S and satisfies $|f(x+i y)| \leq \frac{C}{1+x^{2}}$ on S for some constant C.
(a) Show that

$$
I(t, y) \stackrel{\text { def }}{=} \int_{\mathbb{R}} f(x+i y) e^{-i x t} d x
$$

is a well-defined bounded continuous function of $(t, y) \in \mathbb{R} \times[0,1]$.
(b) Under what conditions will $|I(t, 1)|$ be bigger than $|I(t, 0)|$?

Proof. (a) For any choice of t, y in the given range, the integrand $f(x+i y) e^{-i x t}$ is continuous and thus locally integrable. By assumption on the decay of $|f|$,

$$
|I(t, y)| \leq \int_{\mathbb{R}}\left|f(x+i y) e^{-i x t}\right| d x \leq \int_{\mathbb{R}} \frac{C}{1+x^{2}} d x=C \pi
$$

Thus the integral defining $I(t, y)$ converges and is bounded in magnitude by the constant $C \pi$. To see that this function is continuous, for any sequence $\left(\epsilon_{n}, \delta_{n}\right) \rightarrow(0,0)$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|I\left(t+\epsilon_{n}, y+\delta_{n}\right)-I(t, y)\right| & \leq \lim _{n \rightarrow \infty} \int_{\mathbb{R}}\left|f\left(x+i\left(y+\delta_{n}\right)\right) e^{-i x\left(t+\epsilon_{n}\right)}-f(x+i y) e^{-i x t}\right| d x \\
& =\int_{\mathbb{R}} \lim _{n \rightarrow \infty}\left|f\left(x+i\left(y+\delta_{n}\right)\right) e^{-i x \epsilon_{n}}-f(x+i y)\right| d x=0
\end{aligned}
$$

(by continuity of f) where we use dominated convergence to justify moving the limit inside the integral, as the integrand is dominated by the integrabale function $\frac{2 C}{1+x^{2}}$.
(b) Consider integrating $g(z)=f(z) e^{-i t z}$ along the closed contour indicated below:

It is clear that $I(t, 0)=\lim _{R \rightarrow \infty} \int_{\gamma_{1}} g(z) d z$. Along γ_{3}, we have

$$
\int_{\gamma_{3}} g(z) d z=\int_{R}^{-R} f(x+i y) e^{-i t(x+i y)} d x=-e^{t y} \int_{-R}^{R} f(x+i y) e^{-i t x} d x
$$

so $\lim _{R \rightarrow \infty} \int_{\gamma_{3}} g(z) d z=-e^{t y} I(t, y)$. Finally, over γ_{2}

$$
\left|\int_{\gamma_{2}} g(z) d z\right| \leq y \cdot \sup _{\gamma_{2}}|g(z)| \leq \frac{C}{1+R^{2}} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

and the same bound holds for the integral along γ_{4}. Since $g(z)$ is analytic within this contour for any R, Cauchy's integral formula tells us

$$
0=\lim _{R \rightarrow \infty} \int_{\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}} g(z) d z=I(t, 0)-e^{t y} I(t, y)
$$

Thus for $y=1$ we have $I(t, 0)=e^{t} I(t, 1)$, so $|I(t, 1)|$ will be larger when $t<0$.
5. Construct a function $f(z)$ analytic for $0<|z|<1$ so that $e^{f(z)}$ has a pole at $z=0$, or else explain why no such function exists.

Proof. We explain that this is not possible. If $g(z)=e^{f(z)}$ were to have a pole at 0 , say of order $k \geq 1$, then by the argument principle

$$
\int_{|z|=r} \frac{g^{\prime}(z)}{g(z)} d z=2 \pi i(\{\# \text { of zeros }\}-\{\# \text { of poles }\}), \quad \text { for any } r<1
$$

where the zeros and poles of g are counted inside the region $\{|z|<r\}$ with multiplicity. For sufficiently small r, the only zero or pole in this region will occur at $z=0$ so the above integral will evaluate to $-2 \pi i k \neq 0$. However, as $g(z)=e^{f(z)}$ we also have

$$
\int_{|z|=r} \frac{g^{\prime}(z)}{g(z)} d z=\int_{|z|=r} \frac{f^{\prime}(z) e^{f(z)}}{e^{f(z)}} d z=\int_{|z|=r} d(f(z))=0
$$

for any r. Thus $e^{f(z)}$ cannot have a pole at the origin.

