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1. Let f be a continuously differentiable function on R. Assume there exist constants a, b ∈ R
such that

f(x)→ a, f ′(x)→ b as x→∞.

Prove or give a counterexample: b must be zero.

Proof. We claim b must be zero. Indeed for any ε > 0 we may choose N such that

|f(x)− a| < ε and |f ′(x)− b| < ε for all x ≥ N.

Then for any M > 0 ∣∣∣∣ ∫ N+M

N

f ′(x)dx

∣∣∣∣ = |f(N +M)− f(N)| < 2ε

and ∣∣∣∣ ∫ N+M

N

(b− f ′(x))dx

∣∣∣∣ ≤ ∫ N+M

N

|f ′(x)− b|dx < Mε.

while the sum of these integrals is

∫ N+M

N

b dx = Mb. Thus |b| < ε+ 2ε/M , so as ε→ 0 this

implies b = 0 as claimed.

2. Using techniques of real analysis (as opposed to complex analysis) show that

lim
R→∞

∫ R

0

sin(x)

x
dx =

π

2
.

Proof. Observe that ∫ ∞
0

e−xtdt =
1

x
,

so applying Fubini’s theorem we have

lim
R→∞

∫ R

0

sin(x)

x
dx = lim

R→∞

∫ R

0

(∫ ∞
0

e−xtdt

)
sin(x)dx

=

∫ ∞
0

(
lim
R→∞

∫ R

0

e−xt sin(x)dx

)
dt.

To evaluate the inner integral we use integration by parts:∫ ∞
0

e−xt sin(x)dx = −e−xt cos(x)

∣∣∣∣∞
0

− t
∫ ∞
0

e−xt cos(x)dx

= 1− te−xt sin(x)

∣∣∣∣∞
0

− t2
∫ ∞
0

e−xt sin(x)dx

= 1− t2
∫ ∞
0

e−xt sin(x)dx
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so

lim
R→∞

∫ R

0

e−xt sin(x)dx =
1

1 + t2
.

Then

lim
R→∞

∫ R

0

sin(x)

x
dx =

∫ ∞
0

(
1

1 + t2

)
dt = arctan(t)

∣∣∣∣∞
0

=
π

2
.

3. Let f be a measurable function on a measure space (X,µ), where µ is a finite measure.
Suppose there are constants K > 0 and p > 1 such that

µ{x ∈ X : |f(x)| > M} < K

Mp
for all M > 0.

Prove that f is integrable.

Proof. For any M > 0 we may write the above expression as an integral of the characteristic
function ∫

X

χ(M < |f(x)|)dx = µ{x ∈ X : |f(x)| > M} < K

Mp
,

and by assumption that µ is a finite measure we also have the trivial bound∫
X

χ(M < |f(x)|)dx ≤ µ(X).

By application of Tonelli’s theorem∫
X

|f(x)|dx =

∫
X

∫ ∞
0

χ(y < |f(x)|)dydx

=

∫ ∞
0

∫
X

χ(y < |f(x)|)dxdy

≤
∫ 1

0

µ(X) +

∫ ∞
1

K

yp
dy = µ(X) +

K

p− 1
<∞.

Thus f is integrable.

4. Let E be a measurable subset of [0, 1]. Assume there is a constant α > 0 such that

m(E ∩ I) ≥ αm(I) for all intervals I ⊂ [0, 1].

Prove that m(E) = 1.

Proof. Since m(I) = m(I\E) +m(E ∩ I) the above condition implies that

m(I\E) ≤ (1− α)m(I) for all intervals I.
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Consider the complement Ec, which is measurable since E is. By definition of the Lebesgue
measure, for any ε > 0 we can find a finite collection of disjoint intervals Ik such that

Ec ⊂
⊔
k

Ik and m(Ec) ≤
∑
k

m(Ik) ≤ m(Ec) + ε.

Then we have Ec =
⊔
k(Ik ∩ Ec) =

⊔
k(Ik\E), so

m(Ec) =
∑
k

m(Ik\E) ≤ (1− α)
∑
k

m(Ik) ≤ (1− α)m(Ec) + (1− α)ε.

As ε → 0, this implies 0 ≤ −αm(Ec) so we must have m(Ec) = 0. Thus m(E) = 1 as
desired.

5. Let (fn)∞n=1 be a sequence of non-negative measurable functions on a measure space (X,µ),
where µ is a finite measure. Assume that fn converges almost everywhere to an integrable
function f .

(a) Show by example that in general limn→∞
∫
fndµ may be infinite.

(b) Suppose limn→∞
∫
fndµ =

∫
fdµ. Prove that fn → f in L1, that is

lim
n→∞

∫
|fn − f |dµ = 0.

Proof. (a) Consider the sequence of functions fn : [0, 1] → R (with the Lebesgue measure)
defined by

fn(x) =

{
n2 if 0 < x < 1/n

0 otherwise,

which converges pointwise to the function f = 0. We have∫
[0,1]

fndµ = n→∞ as n→∞.

(b) For each n ≥ 1, define gn = max(fn − f, 0) and hn = min(fn − f, 0) so that

fn − f = gn + hn and |fn − f | = gn − hn = |gn|+ |hn|.

It is clear that both sequences gn and hn converge to 0 a.e. Since fn and f are non-
negative, |hn| ≤ |f | so by dominated convergence

lim
n→∞

∫
|hn|dµ =

∫
lim
n→∞

|hn|dµ = 0.

Then since
∫
|fn−f |dµ =

∫
|gn|dµ+

∫
|hn|dµ, it suffices to show that

∫
|gn|dµ→ 0. But

we are given that

lim
n→∞

∫
(fn − f)dµ = lim

n→∞

∫
(gn + hn)dµ = 0,

so lim
n→∞

∫
gndµ = lim

n→∞

∫
|gn|dµ = 0 as desired.
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Afternoon session

1. Let ∆ denote the unit disk {z ∈ C : |z| < 1}, let H denote the right half-plane {z ∈ C :
Re z > 0} and let f be an analytic function mapping H into ∆ and satisfying f(5) = 0.
Based on the given information, what are you able to say about f ′(5)?

Proof. Observe that the möbius transformation

g(z) =
z − 5

z + 5

is an analytic isomorphism from H to ∆ sending 5 to 0, such that

g′(5) =
10

(5 + 5)2
=

1

10
.

We may factor the given f : H → ∆ as a composition h ◦ g, (namely h = f ◦ g−1 : ∆→ ∆) so
that h(0) = 0 and f ′(5) = h′(g(5))g′(5) = h′(0)/10. By Schwarz-Pick

|h′(z)| ≤ 1− |h(z)|2

1− |z|2
⇒ |h′(0)| ≤ 1 .

Thus we have |f ′(5)| ≤ 1/10.

For any α ∈ ∆ = {z : |z| ≤ 1}, the function f = αg satisfies the given hypotheses, and has
f ′(5) = α/10. So the above condition is the only constraint on the value f ′(5).

2. Let f = u+iv be an entire function with the property that (u2)xx+(u2)yy vanishes identically
along the real axis. (The subscripts denote partial derivatives.) What can you conclude about
f?

Proof. Along the real axis, we have

(u2)xx + (u2)yy = (2uux)x + (2uuy)y = 2(uuxx + (ux)2) + 2(uuyy + (uy)2)

= 2u(uxx + uyy) + 2(u2x + u2y) = 0.

Since f is entire, the real and imaginary parts u, v are both harmonic, so uxx + uyy = 0 on
the entire domain. Thus the above equality implies

(ux)2 + (uy)2 = 0 ⇒ ux = uy = 0

along the real axis, since both ux and uy are real-valued. Thus u is constant along the real
axis, and by Cauchy-Riemann (vx = −uy = 0) v is also constant. Thus f is constant along
the real axis, so its unique analytic continuation to the complex plane is constant as well.

3. Find all solutions of cos(z) = 1 + 100z2 in the unit disk |z| < 1.
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Proof. Note that finding solutions to the given equation is equivalent to finding zeros of the
function f(z) = 100z2 + 1− cos(z). Taking the Taylor expansion of cos(z) around 0, we have

f(z) = 100.5z2 + (higher-order terms)

so f has a zero of multiplicity 2 at z = 0.

This is in fact the only zero of f in the unit disk, which we prove using Rouche’s theorem.
For z in the closed unit disk we have in particular that |Im z| ≤ 1, so

|1− cos(z)| ≤ 1 + | cos(z)| ≤ 1 + | cosh(Im z)| ≤ 1 +
e+ e−1

2
< 3,

while |100z2| = 100 on the boundary of the disk. Thus we have the strict inequality

|1− cos(z)| < |100z2|

on the boundary of this region, so f(z) and 100z2 must have the same number of zeros,
counted with multiplicity, in the interior. This zero-count is clearly 2 for the function 100z2,
so we have already found all zeros of f as claimed.

4. Let S denote the strip {z = x+ iy : 0 ≤ y ≤ 1}. Suppose that f is analytic in a neighborhood
of S and satisfies |f(x+ iy)| ≤ C

1+x2 on S for some constant C.

(a) Show that

I(t, y)
def
=

∫
R
f(x+ iy)e−ixtdx

is a well-defined bounded continuous function of (t, y) ∈ R× [0, 1].

(b) Under what conditions will |I(t, 1)| be bigger than |I(t, 0)|?

Proof. (a) For any choice of t, y in the given range, the integrand f(x+iy)e−ixt is continuous
and thus locally integrable. By assumption on the decay of |f |,

|I(t, y)| ≤
∫
R
|f(x+ iy)e−ixt|dx ≤

∫
R

C

1 + x2
dx = Cπ.

Thus the integral defining I(t, y) converges and is bounded in magnitude by the constant
Cπ. To see that this function is continuous, for any sequence (εn, δn)→ (0, 0)

lim
n→∞

|I(t+ εn, y + δn)− I(t, y)| ≤ lim
n→∞

∫
R
|f(x+ i(y + δn))e−ix(t+εn) − f(x+ iy)e−ixt|dx

=

∫
R

lim
n→∞

|f(x+ i(y + δn))e−ixεn − f(x+ iy)|dx = 0,

(by continuity of f) where we use dominated convergence to justify moving the limit

inside the integral, as the integrand is dominated by the integrabale function
2C

1 + x2
.

(b) Consider integrating g(z) = f(z)e−itz along the closed contour indicated below:
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R

R+ iy−R+ iy

−R x

y

O

γ4

γ3

γ2

γ1

It is clear that I(t, 0) = limR→∞
∫
γ1
g(z)dz. Along γ3, we have∫

γ3

g(z)dz =

∫ −R
R

f(x+ iy)e−it(x+iy)dx = −ety
∫ R

−R
f(x+ iy)e−itxdx,

so limR→∞
∫
γ3
g(z)dz = −etyI(t, y). Finally, over γ2∣∣∣∣ ∫

γ2

g(z)dz

∣∣∣∣ ≤ y · sup
γ2

|g(z)| ≤ C

1 +R2
→ 0 as R→∞

and the same bound holds for the integral along γ4. Since g(z) is analytic within this
contour for any R, Cauchy’s integral formula tells us

0 = lim
R→∞

∫
γ1+γ2+γ3+γ4

g(z)dz = I(t, 0)− etyI(t, y).

Thus for y = 1 we have I(t, 0) = etI(t, 1), so |I(t, 1)| will be larger when t < 0.

5. Construct a function f(z) analytic for 0 < |z| < 1 so that ef(z) has a pole at z = 0, or else
explain why no such function exists.

Proof. We explain that this is not possible. If g(z) = ef(z) were to have a pole at 0, say of
order k ≥ 1, then by the argument principle∫

|z|=r

g′(z)

g(z)
dz = 2πi({# of zeros} − {# of poles}), for any r < 1

where the zeros and poles of g are counted inside the region {|z| < r} with multiplicity. For
sufficiently small r, the only zero or pole in this region will occur at z = 0 so the above integral
will evaluate to −2πik 6= 0. However, as g(z) = ef(z) we also have∫

|z|=r

g′(z)

g(z)
dz =

∫
|z|=r

f ′(z)ef(z)

ef(z)
dz =

∫
|z|=r

d(f(z)) = 0,

for any r. Thus ef(z) cannot have a pole at the origin.

6


