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Morning session

1. Let H = {z ∈ C : Re (z) > 0}, and let f : H̄→ C be a bounded continuous function, which is
analytic in H. Prove that for any z = x+ iy ∈ H

f(z) =
x

π

∫ ∞
−∞

f(it)dt

x2 + (t− y)2
.

Proof. Consider integrating the function

g(w) =
f(w)

(w + z̄)(w − z)

over the semicircular contour indicated below:

ε− iR

ε+ iR

x

y

O
z
×

γ2
γ1

This function is meromorphic inside the given region, and has a single pole at w = z with
residue

Resg(z) = lim
w→z

(w − z)g(z) =
f(z)

z + z̄
=
f(z)

2x
.

Along γ2, we have∣∣∣∣ ∫
γ2

g(w)dw

∣∣∣∣ ≤ |γ2| · sup
γ2

|g(w)|

≤ πR · M

(R− |z|)2
≈ πM

R
→ 0 as R→∞.

where M is a uniform bound on |f(w)| in H̄. Along γ1, we have

lim
ε→0

∫
γ1

g(w)dw = lim
ε→0

∫ −R
R

f(ε+ it)

(ε+ it+ z̄)(ε+ it− z)
idt

= −i
∫ R

−R

f(it)dt

(x+ i(t− y))(−x+ i(t− y))
= i

∫ R

−R

f(it)dt

x2 + (t− y)2
,

where passing the limit inside the integral is justified by dominated convergence under
M

(x/2)2 + (t− y)2

(assuming ε < x/2).
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Thus Cauchy’s integral formula tells us that

f(z)

2x
=
∑

Resg = lim
ε→0
R→∞

1

2πi

∫
γ1+γ2

g(w)dw =
1

2π

∫ ∞
−∞

f(it)dt

x2 + (t− y)2
,

and multiplying the above equation by 2x gives the desired result.

2. Let f : D→ D, f(z) =
∑∞
n=0 anz

n, be a bounded analytic function.

(a) Prove that for any r < 1

∞∑
n=0

|an|2r2n =
1

2π

∫ 2π

0

|f(reit)|2dt.

(b) Show that the series
∑∞
n=0 |an|2 converges.

Proof. (a) Let fN =

N∑
n=0

anz
n denote the degree-N Taylor approximation of f . Note that

for any r < 1, the convergence fN → f is uniform on the circle {|z| = r} since f is
analytic in D. We have for any z = reit ∈ D

|fN (z)|2 = (

N∑
n=0

anz
n)(

N∑
n=0

ānz̄
n) =

N∑
n=0

|an|2|z|2n +
∑

0≤n 6=m≤N

anāmz
nz̄m

=

N∑
n=0

|an|2r2n +
∑
n 6=m

anāmr
n+me(n−m)it.

It is straightforward to verify that integrating zk or z̄k around a circle gives you zero:∫ 2π

0

(reit)kdt =

∫ 2π

0

(re−it)kdt = 0 for k 6= 0,

(by orthogonality of cos(kt), sin(kt)) while the other terms are constant. Thus

1

2π

∫ 2π

0

|fN (reit)|2dt =
1

2π

∫ 2π

0

( ∑
n≤N

|an|2r2n
)
dt+

∑
n 6=m

(
anāmr

n+m 1

2π

∫ 2π

0

e(n−m)itdt

)
=
∑
n≤N

|an|2r2n

Taking N →∞ gives the desired equality.

(b) As r approaches 1, the uniform bound |f(z)| ≤ 1 ensures that

lim
r→1

1

2π

∫ 2π

0

|f(reit)|2dt ≤ 1

2π

∫ 2π

0

dt = 1.
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Thus ∑
n≥0

|an|2 = lim
r→1

(∑
n≥0

|an|2r2n
)
≤ 1

is finite by monotone convergence.

3. Let f be a function which is analytic on the wedge

W = {z ∈ C : Re (z) > 0, −π
6
< Arg (z) <

π

6
},

which is bounded on W , and verifies for all r > 0

lim
θ→±π6

f(reiθ) := ϕ(r) ∈ R.

Show that f must be real and constant.

Hint: Consider using Schwarz reflection.

Proof. Following the hint, we note that f may be extended to an entire function by reflecting
its values on W six times around the origin. Since f is bounded on W , this extension to C
will also be bounded. Thus f must be constant, and since it takes real values (in some limit)
it must be a real constant.

4. Evaluate ∫ ∞
0

lnxdx

(x− 1)
√
x
.

Proof. Denote the given integral by I. Substituting y = ln(x)

I =

∫ ∞
−∞

yeydy

(ey − 1)ey/2
=

∫ ∞
−∞

y dy

ey/2 − e−y/2
.

If we consider integrating f(z) =
z

ez/2 − e−z/2
along the rectangular contour that encloses

{z : 0 ≤ Im z ≤ π, −R ≤ Re z ≤ R}, which does not contain any poles of f , we see that
the integrals over the vertical segments go to 0 as R → ∞, so the integral along the lower
boundary must equal the integral along the upper boundary (taking both integrals from left
to right). Thus

I =

∫ ∞
−∞

(y + πi)dy

e(y+πi)/2 − e−(y+πi)/2
=

∫ ∞
−∞

y

iey/2 + ie−y/2
dy +

∫ ∞
−∞

πi

iey/2 + ie−y/2
dy

= −i
∫ ∞
−∞

y

ey/2 + e−y/2
dy + π

∫ ∞
−∞

1

ey/2 + e−y/2
dy

= π

∫ ∞
−∞

1

ey/2 + e−y/2
dy

since the integrand in the first term is an odd function.
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Substituting back w = ey/2,∫ ∞
−∞

1

ey/2 + e−y/2
dy =

∫ ∞
−∞

ey/2dy

ey + 1
=

∫ ∞
0

2dw

w2 + 1
= 2 arctan(w)

∣∣∣∣∞
0

= π.

Thus I = π2.

5. Let Ω ⊂ C be a bounded, simply connected domain in C. Let z0 and z1 be two distinct
points of Ω. If ϕ1 and ϕ2 are two one-to-one and onto analytic maps from Ω onto itself, and
ϕ1(zi) = ϕ2(zi), i = 0, 1, show that ϕ1

∼= ϕ2 on Ω.

Proof. The given conditions of Ω imply that it is analytically isomorphic to the unit disk D
by the Riemann mapping theorem. Thus we may take some analytic isomorphism Φ: Ω→ D,
which we may assume sends z0 7→ 0 without loss of generality. Then ϕ̃1 := Φ ◦ ϕ1 ◦ Φ−1

defines a bijective analytic map from D to itself, as does ϕ̃2 := Φ ◦ ϕ2 ◦ Φ−1.

Now consider ϕ̃−12 ◦ ϕ̃1 : D → D which is equal to Φ ◦ (ϕ−12 ◦ ϕ1) ◦ Φ−1. This fixes the
origin and the point w1 := Φ(z1). In particular, this means |ϕ̃1(w1)| = |w1|, so Schwarz’s
lemma implies that ϕ̃−12 ◦ ϕ̃1 is the identity (i.e. the only rotation that fixes w1). Then
ϕ−12 ◦ ϕ1 = Φ−1 ◦ (ϕ̃−12 ◦ ϕ̃1) ◦ Φ = Φ−1 ◦ Φ must be the identity on Ω, so ϕ1 ≡ ϕ2.
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Afternoon session

1. Let f ∈ L1((0, 1)), and define g : (0, 1)→ R by

g(x) =

∫ 1

x

f(t)

t
dt.

Prove that g ∈ L1((0, 1)).

Proof. We apply Tonelli’s theorem to exchange the order of integration:∫ 1

0

|g(x)|dx ≤
∫ 1

0

∫ 1

x

|f(t)|
t

dtdx

=

∫ 1

0

|f(t)|
t

∫ t

0

dxdt =

∫ 1

0

|f(t)|dt.

Thus ‖g‖1 ≤ ‖f‖1 <∞ by assumption f ∈ L1, so g ∈ L1 as well.

2. Let (X,A, µ) be a finite measure space, and let F : R → R be a C2 function with second
derivative F ′′ > 0. Let f ∈ L1(µ) be real-valued. Prove Jensen’s inequality:

F

(
1

µ(X)

∫
fdµ

)
≤ 1

µ(X)

∫
F (f)dµ.

Proof. For any t0, t ∈ R,

F (t) = F (t0) +

∫ t

t0

F ′(s)ds = F (t0) + (t− t0)F ′(t0) +

∫ t

t0

∫ s

t0

F ′′(r)drds

≥ F (t0) + (t− t0)F ′(t0)

since F ′′ > 0 and the two integrals are either both positively oriented, or both negatively
oriented. (Moreover, the inequality is strict if t 6= t0.)

Now take f0 = 1
µ(X)

∫
fdµ ∈ R, so that∫

X

fdµ = µ(X)f0 =

∫
X

f0 dµ ⇒
∫
X

(f − f0)dµ = 0.

We have F (f) ≥ F (f0) + (f − f0)F ′(f0) for any f ∈ R, so integrating this inequality over X
we have ∫

X

F (f)dµ ≥ F (f0)

∫
X

dµ+ F ′(f0)

∫
X

(f − f0)dµ = µ(X)F (f0).

Dividing by µ(X) gives the desired result.
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3. Let f, g1, g2, . . . ∈ L1(R) be non-negative functions. Assume that gn → f a.e. and∫
R
gndm =

∫
R
fdm.

Prove that for any measurable set A ⊆ R∫
A

gndm→
∫
A

fdm.

Proof. For any measurable A, Fatou’s lemma says that∫
A

fdm =

∫
A

(lim inf
n→∞

gn)dm ≤ lim inf
n→∞

∫
A

gndm.

To prove limn→∞
∫
A
gn =

∫
A
f it suffices to show that

∫
A
f ≥ lim supn→∞

∫
A
gn. For this,

consider integrating these over the complement Ac:∫
Ac
fdm =

∫
Ac

(lim inf
n→∞

gn)dm ≤ lim inf
n→∞

∫
Ac
gndm.

Expressing these in terms of the total integral over R gives∫
R
fdm−

∫
A

fdm ≤ lim inf
n→∞

(∫
R
gndm−

∫
A

gndm

)
=

∫
R
fdm− lim sup

n→∞

∫
A

gndm

so we must have ∫
A

fdm ≥ lim sup
n→∞

∫
A

gndm.

This shows the desired convergence of integrals.

4. Let (X,A, µ) be a finite measure space. Let {fn}∞n=1 ⊂ L2(µ) be a sequence of functions such
that ‖fn‖2 ≤ 1.

(a) Prove that if fn → 0 in measure, then fn → 0 in L1(µ).

(b) If fn → 0 in measure, does it necessarily follow that fn → 0 in L2(µ)?

Proof. (a) Suppose fn → 0 in measure, meaning that for any ε > 0

lim
n→∞

µ({x : |fn(x)| > ε}) = 0.

The Cauchy-Schwarz inequality implies that for any measurable A ⊂ X,∫
A

|fn|dµ ≤
(∫

A

|fn|2dµ
)1/2(∫

A

dµ

)1/2

≤ (µ(A))1/2

since we are given that ‖f‖2 ≤ 1.

Now consider the measurable sets En,ε = {x : |fn(x)| > ε}. By convergence in measure

lim sup
n→∞

∫
En,ε

|fn|dµ ≤ lim sup
n→∞

µ(En,ε)
1/2 = 0
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for any fixed ε > 0, so

lim sup
n→∞

∫
X

|fn|dµ = lim sup
n→∞

(∫
Ecn,ε

|fn|dµ+

∫
En,ε

|fn|dµ
)

≤ lim sup
n→∞

∫
Ecn,ε

ε dµ+ lim sup
n→∞

∫
En,ε

|fn|dµ ≤ ε ·m(X).

As ε→ 0, this bound goes to zero so fn → 0 in L1 as desired.

(b) No; consider the sequence in L2([0, 1]) with the Lebesgue measure defined by

fn(x) =

{√
n if 0 < x < 1

n ,

0 otherwise.

It is straightforward to verify that fn → 0 in measure, but ‖fn‖2 = 1 for all n so fn 6→ 0
in L2.

5. Let F ⊂ R be a closed set, and define the distance from x ∈ R to F by

d(x, F ) = inf
y∈F
|x− y|.

Prove that

lim
x→y

d(x, F )

|x− y|
= 0

for a.e. y ∈ F .

Hint: Consider Lebesgue points of F .

Proof. Recall that y ∈ F is a Lebesgue point of F if

lim
m(B)→0
y∈B

m(B ∩ F )

m(B)
= 1 ⇔ lim

m(B)→0
y∈B

m(B)−m(B ∩ F )

m(B)
= 0

where the limit is taken over balls (i.e. intervals) B in R that contain y. Since Lebesgue
points have full measure in F it suffices to prove the given equality for Lebesgue points.

Suppose y is a Lebesgue point of F , and x ∈ R arbitrary. Let Br(x) denote the ball of radius
r centered at x, and let Br := Br(x, y) denote the smallest open interval containing both
Br(x) and Br(y). It is clear that m(Br) = |x− y|+ 2r. If we intersect this ball with F , then
we must exclude an interval of length at least d(x, F ) :

m(Br ∩ F ) ≤ m(Br)− d(x, F ) ⇒ d(x, F ) ≤ m(Br)−m(Br ∩ F ).

This implies

d(x, F )

|x− y|
≤ lim inf

r→0

m(Br)−m(Br ∩ F )

|x− y|
= lim inf

r→0

m(Br)−m(Br ∩ F )

m(Br)
.
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Since y is a Lebesgue point, for any ε > 0 there is an δ > such that

m(B) < δ, y ∈ B ⇒
∣∣∣∣m(B)−m(B ∩ F )

m(B)

∣∣∣∣ < ε.

so taking B = Br(x, y) for any x satisfying 0 < |x− y| < δ, we have

0 ≤ d(x, F )

|x− y|
≤ lim inf

r→0

m(Br)−m(Br ∩ F )

m(Br)
< ε.

In the limit as x approaches y, we get lim
x→y

d(x, F )

|x− y|
< ε. But since ε was arbitrary, this shows

that the limit is in fact 0.
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