Morning session

1. Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$, and let $f: \overline{\mathbb{H}} \rightarrow \mathbb{C}$ be a bounded continuous function, which is analytic in \mathbb{H}. Prove that for any $z=x+i y \in \mathbb{H}$

$$
f(z)=\frac{x}{\pi} \int_{-\infty}^{\infty} \frac{f(i t) d t}{x^{2}+(t-y)^{2}}
$$

Proof. Consider integrating the function

$$
g(w)=\frac{f(w)}{(w+\bar{z})(w-z)}
$$

over the semicircular contour indicated below:

This function is meromorphic inside the given region, and has a single pole at $w=z$ with residue

$$
\operatorname{Res}_{g}(z)=\lim _{w \rightarrow z}(w-z) g(z)=\frac{f(z)}{z+\bar{z}}=\frac{f(z)}{2 x}
$$

Along γ_{2}, we have

$$
\begin{aligned}
\left|\int_{\gamma_{2}} g(w) d w\right| & \leq\left|\gamma_{2}\right| \cdot \sup _{\gamma_{2}}|g(w)| \\
& \leq \pi R \cdot \frac{M}{(R-|z|)^{2}} \approx \frac{\pi M}{R} \rightarrow 0 \quad \text { as } R \rightarrow \infty
\end{aligned}
$$

where M is a uniform bound on $|f(w)|$ in $\overline{\mathbb{H}}$. Along γ_{1}, we have

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} \int_{\gamma_{1}} g(w) d w & =\lim _{\epsilon \rightarrow 0} \int_{R}^{-R} \frac{f(\epsilon+i t)}{(\epsilon+i t+\bar{z})(\epsilon+i t-z)} i d t \\
& =-i \int_{-R}^{R} \frac{f(i t) d t}{(x+i(t-y))(-x+i(t-y))}=i \int_{-R}^{R} \frac{f(i t) d t}{x^{2}+(t-y)^{2}}
\end{aligned}
$$

where passing the limit inside the integral is justified by dominated convergence under $\frac{M}{(x / 2)^{2}+(t-y)^{2}}$ (assuming $\epsilon<x / 2$).

Thus Cauchy's integral formula tells us that

$$
\frac{f(z)}{2 x}=\sum \operatorname{Res}_{g}=\lim _{\substack{\epsilon \rightarrow 0 \\ R \rightarrow \infty}} \frac{1}{2 \pi i} \int_{\gamma_{1}+\gamma_{2}} g(w) d w=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{f(i t) d t}{x^{2}+(t-y)^{2}}
$$

and multiplying the above equation by $2 x$ gives the desired result.
2. Let $f: \mathbb{D} \rightarrow \mathbb{D}, f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, be a bounded analytic function.
(a) Prove that for any $r<1$

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{2} d t
$$

(b) Show that the series $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}$ converges.

Proof. (a) Let $f_{N}=\sum_{n=0}^{N} a_{n} z^{n}$ denote the degree- N Taylor approximation of f. Note that for any $r<1$, the convergence $f_{N} \rightarrow f$ is uniform on the circle $\{|z|=r\}$ since f is analytic in \mathbb{D}. We have for any $z=r e^{i t} \in \mathbb{D}$

$$
\begin{aligned}
\left|f_{N}(z)\right|^{2} & =\left(\sum_{n=0}^{N} a_{n} z^{n}\right)\left(\sum_{n=0}^{N} \bar{a}_{n} \bar{z}^{n}\right)=\sum_{n=0}^{N}\left|a_{n}\right|^{2}|z|^{2 n}+\sum_{0 \leq n \neq m \leq N} a_{n} \bar{a}_{m} z^{n} \bar{z}^{m} \\
& =\sum_{n=0}^{N}\left|a_{n}\right|^{2} r^{2 n}+\sum_{n \neq m} a_{n} \bar{a}_{m} r^{n+m} e^{(n-m) i t}
\end{aligned}
$$

It is straightforward to verify that integrating z^{k} or \bar{z}^{k} around a circle gives you zero:

$$
\int_{0}^{2 \pi}\left(r e^{i t}\right)^{k} d t=\int_{0}^{2 \pi}\left(r e^{-i t}\right)^{k} d t=0 \quad \text { for } k \neq 0
$$

(by orthogonality of $\cos (k t), \sin (k t))$ while the other terms are constant. Thus

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{N}\left(r e^{i t}\right)\right|^{2} d t & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\sum_{n \leq N}\left|a_{n}\right|^{2} r^{2 n}\right) d t+\sum_{n \neq m}\left(a_{n} \bar{a}_{m} r^{n+m} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{(n-m) i t} d t\right) \\
& =\sum_{n \leq N}\left|a_{n}\right|^{2} r^{2 n}
\end{aligned}
$$

Taking $N \rightarrow \infty$ gives the desired equality.
(b) As r approaches 1 , the uniform bound $|f(z)| \leq 1$ ensures that

$$
\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{2} d t \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} d t=1
$$

Thus

$$
\sum_{n \geq 0}\left|a_{n}\right|^{2}=\lim _{r \rightarrow 1}\left(\sum_{n \geq 0}\left|a_{n}\right|^{2} r^{2 n}\right) \leq 1
$$

is finite by monotone convergence.
3. Let f be a function which is analytic on the wedge

$$
W=\left\{z \in \mathbb{C}: \operatorname{Re}(z)>0,-\frac{\pi}{6}<\operatorname{Arg}(z)<\frac{\pi}{6}\right\}
$$

which is bounded on W, and verifies for all $r>0$

$$
\lim _{\theta \rightarrow \pm \frac{\pi}{6}} f\left(r e^{i \theta}\right):=\varphi(r) \in \mathbb{R}
$$

Show that f must be real and constant.
Hint: Consider using Schwarz reflection.
Proof. Following the hint, we note that f may be extended to an entire function by reflecting its values on W six times around the origin. Since f is bounded on W, this extension to \mathbb{C} will also be bounded. Thus f must be constant, and since it takes real values (in some limit) it must be a real constant.
4. Evaluate

$$
\int_{0}^{\infty} \frac{\ln x d x}{(x-1) \sqrt{x}}
$$

Proof. Denote the given integral by I. Substituting $y=\ln (x)$

$$
I=\int_{-\infty}^{\infty} \frac{y e^{y} d y}{\left(e^{y}-1\right) e^{y / 2}}=\int_{-\infty}^{\infty} \frac{y d y}{e^{y / 2}-e^{-y / 2}}
$$

If we consider integrating $f(z)=\frac{z}{e^{z / 2}-e^{-z / 2}}$ along the rectangular contour that encloses $\{z: 0 \leq \operatorname{Im} z \leq \pi,-R \leq \operatorname{Re} z \leq R\}$, which does not contain any poles of f, we see that the integrals over the vertical segments go to 0 as $R \rightarrow \infty$, so the integral along the lower boundary must equal the integral along the upper boundary (taking both integrals from left to right). Thus

$$
\begin{aligned}
I=\int_{-\infty}^{\infty} \frac{(y+\pi i) d y}{e^{(y+\pi i) / 2}-e^{-(y+\pi i) / 2}} & =\int_{-\infty}^{\infty} \frac{y}{i e^{y / 2}+i e^{-y / 2}} d y+\int_{-\infty}^{\infty} \frac{\pi i}{i^{y / 2}+i e^{-y / 2}} d y \\
& =-i \int_{-\infty}^{\infty} \frac{y}{e^{y / 2}+e^{-y / 2}} d y+\pi \int_{-\infty}^{\infty} \frac{1}{e^{y / 2}+e^{-y / 2}} d y \\
& =\pi \int_{-\infty}^{\infty} \frac{1}{e^{y / 2}+e^{-y / 2}} d y
\end{aligned}
$$

since the integrand in the first term is an odd function.

Substituting back $w=e^{y / 2}$,

$$
\int_{-\infty}^{\infty} \frac{1}{e^{y / 2}+e^{-y / 2}} d y=\int_{-\infty}^{\infty} \frac{e^{y / 2} d y}{e^{y}+1}=\int_{0}^{\infty} \frac{2 d w}{w^{2}+1}=\left.2 \arctan (w)\right|_{0} ^{\infty}=\pi
$$

Thus $I=\pi^{2}$.
5. Let $\Omega \subset \mathbb{C}$ be a bounded, simply connected domain in \mathbb{C}. Let z_{0} and z_{1} be two distinct points of Ω. If φ_{1} and φ_{2} are two one-to-one and onto analytic maps from Ω onto itself, and $\varphi_{1}\left(z_{i}\right)=\varphi_{2}\left(z_{i}\right), i=0,1$, show that $\varphi_{1} \cong \varphi_{2}$ on Ω.

Proof. The given conditions of Ω imply that it is analytically isomorphic to the unit disk \mathbb{D} by the Riemann mapping theorem. Thus we may take some analytic isomorphism $\Phi: \Omega \rightarrow \mathbb{D}$, which we may assume sends $z_{0} \mapsto 0$ without loss of generality. Then $\tilde{\varphi}_{1}:=\Phi \circ \varphi_{1} \circ \Phi^{-1}$ defines a bijective analytic map from \mathbb{D} to itself, as does $\tilde{\varphi}_{2}:=\Phi \circ \varphi_{2} \circ \Phi^{-1}$.
Now consider $\tilde{\varphi}_{2}^{-1} \circ \tilde{\varphi}_{1}: \mathbb{D} \rightarrow \mathbb{D}$ which is equal to $\Phi \circ\left(\varphi_{2}^{-1} \circ \varphi_{1}\right) \circ \Phi^{-1}$. This fixes the origin and the point $w_{1}:=\Phi\left(z_{1}\right)$. In particular, this means $\left|\tilde{\varphi}_{1}\left(w_{1}\right)\right|=\left|w_{1}\right|$, so Schwarz's lemma implies that $\tilde{\varphi}_{2}^{-1} \circ \tilde{\varphi}_{1}$ is the identity (i.e. the only rotation that fixes w_{1}). Then $\varphi_{2}^{-1} \circ \varphi_{1}=\Phi^{-1} \circ\left(\tilde{\varphi}_{2}^{-1} \circ \tilde{\varphi}_{1}\right) \circ \Phi=\Phi^{-1} \circ \Phi$ must be the identity on Ω, so $\varphi_{1} \equiv \varphi_{2}$.

Afternoon session

1. Let $f \in L^{1}((0,1))$, and define $g:(0,1) \rightarrow \mathbb{R}$ by

$$
g(x)=\int_{x}^{1} \frac{f(t)}{t} d t
$$

Prove that $g \in L^{1}((0,1))$.
Proof. We apply Tonelli's theorem to exchange the order of integration:

$$
\begin{aligned}
\int_{0}^{1}|g(x)| d x & \leq \int_{0}^{1} \int_{x}^{1} \frac{|f(t)|}{t} d t d x \\
& =\int_{0}^{1} \frac{|f(t)|}{t} \int_{0}^{t} d x d t=\int_{0}^{1}|f(t)| d t
\end{aligned}
$$

Thus $\|g\|_{1} \leq\|f\|_{1}<\infty$ by assumption $f \in L^{1}$, so $g \in L^{1}$ as well.
2. Let (X, \mathcal{A}, μ) be a finite measure space, and let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{2} function with second derivative $F^{\prime \prime}>0$. Let $f \in L^{1}(\mu)$ be real-valued. Prove Jensen's inequality:

$$
F\left(\frac{1}{\mu(X)} \int f d \mu\right) \leq \frac{1}{\mu(X)} \int F(f) d \mu
$$

Proof. For any $t_{0}, t \in \mathbb{R}$,

$$
\begin{aligned}
F(t) & =F\left(t_{0}\right)+\int_{t_{0}}^{t} F^{\prime}(s) d s=F\left(t_{0}\right)+\left(t-t_{0}\right) F^{\prime}\left(t_{0}\right)+\int_{t_{0}}^{t} \int_{t_{0}}^{s} F^{\prime \prime}(r) d r d s \\
& \geq F\left(t_{0}\right)+\left(t-t_{0}\right) F^{\prime}\left(t_{0}\right)
\end{aligned}
$$

since $F^{\prime \prime}>0$ and the two integrals are either both positively oriented, or both negatively oriented. (Moreover, the inequality is strict if $t \neq t_{0}$.)
Now take $f_{0}=\frac{1}{\mu(X)} \int f d \mu \in \mathbb{R}$, so that

$$
\int_{X} f d \mu=\mu(X) f_{0}=\int_{X} f_{0} d \mu \Rightarrow \int_{X}\left(f-f_{0}\right) d \mu=0
$$

We have $F(f) \geq F\left(f_{0}\right)+\left(f-f_{0}\right) F^{\prime}\left(f_{0}\right)$ for any $f \in \mathbb{R}$, so integrating this inequality over X we have

$$
\int_{X} F(f) d \mu \geq F\left(f_{0}\right) \int_{X} d \mu+F^{\prime}\left(f_{0}\right) \int_{X}\left(f-f_{0}\right) d \mu=\mu(X) F\left(f_{0}\right)
$$

Dividing by $\mu(X)$ gives the desired result.
3. Let $f, g_{1}, g_{2}, \ldots \in L^{1}(\mathbb{R})$ be non-negative functions. Assume that $g_{n} \rightarrow f$ a.e. and

$$
\int_{\mathbb{R}} g_{n} d m=\int_{\mathbb{R}} f d m
$$

Prove that for any measurable set $A \subseteq \mathbb{R}$

$$
\int_{A} g_{n} d m \rightarrow \int_{A} f d m
$$

Proof. For any measurable A, Fatou's lemma says that

$$
\int_{A} f d m=\int_{A}\left(\liminf _{n \rightarrow \infty} g_{n}\right) d m \leq \liminf _{n \rightarrow \infty} \int_{A} g_{n} d m
$$

To prove $\lim _{n \rightarrow \infty} \int_{A} g_{n}=\int_{A} f$ it suffices to show that $\int_{A} f \geq \lim \sup _{n \rightarrow \infty} \int_{A} g_{n}$. For this, consider integrating these over the complement A^{c} :

$$
\int_{A^{c}} f d m=\int_{A^{c}}\left(\liminf _{n \rightarrow \infty} g_{n}\right) d m \leq \liminf _{n \rightarrow \infty} \int_{A^{c}} g_{n} d m
$$

Expressing these in terms of the total integral over \mathbb{R} gives

$$
\int_{\mathbb{R}} f d m-\int_{A} f d m \leq \liminf _{n \rightarrow \infty}\left(\int_{\mathbb{R}} g_{n} d m-\int_{A} g_{n} d m\right)=\int_{\mathbb{R}} f d m-\limsup _{n \rightarrow \infty} \int_{A} g_{n} d m
$$

so we must have

$$
\int_{A} f d m \geq \limsup _{n \rightarrow \infty} \int_{A} g_{n} d m
$$

This shows the desired convergence of integrals.
4. Let (X, \mathcal{A}, μ) be a finite measure space. Let $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L^{2}(\mu)$ be a sequence of functions such that $\left\|f_{n}\right\|_{2} \leq 1$.
(a) Prove that if $f_{n} \rightarrow 0$ in measure, then $f_{n} \rightarrow 0$ in $L^{1}(\mu)$.
(b) If $f_{n} \rightarrow 0$ in measure, does it necessarily follow that $f_{n} \rightarrow 0$ in $L^{2}(\mu)$?

Proof. (a) Suppose $f_{n} \rightarrow 0$ in measure, meaning that for any $\epsilon>0$

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{x:\left|f_{n}(x)\right|>\epsilon\right\}\right)=0
$$

The Cauchy-Schwarz inequality implies that for any measurable $A \subset X$,

$$
\int_{A}\left|f_{n}\right| d \mu \leq\left(\int_{A}\left|f_{n}\right|^{2} d \mu\right)^{1 / 2}\left(\int_{A} d \mu\right)^{1 / 2} \leq(\mu(A))^{1 / 2}
$$

since we are given that $\|f\|_{2} \leq 1$.
Now consider the measurable sets $E_{n, \epsilon}=\left\{x:\left|f_{n}(x)\right|>\epsilon\right\}$. By convergence in measure

$$
\limsup _{n \rightarrow \infty} \int_{E_{n, \epsilon}}\left|f_{n}\right| d \mu \leq \limsup _{n \rightarrow \infty} \mu\left(E_{n, \epsilon}\right)^{1 / 2}=0
$$

for any fixed $\epsilon>0$, so

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \int_{X}\left|f_{n}\right| d \mu & =\limsup _{n \rightarrow \infty}\left(\int_{E_{n, \epsilon}^{c}}\left|f_{n}\right| d \mu+\int_{E_{n, \epsilon}}\left|f_{n}\right| d \mu\right) \\
& \leq \limsup _{n \rightarrow \infty} \int_{E_{n, \epsilon}^{c}} \epsilon d \mu+\limsup _{n \rightarrow \infty} \int_{E_{n, \epsilon}}\left|f_{n}\right| d \mu \leq \epsilon \cdot m(X)
\end{aligned}
$$

As $\epsilon \rightarrow 0$, this bound goes to zero so $f_{n} \rightarrow 0$ in L^{1} as desired.
(b) No; consider the sequence in $L^{2}([0,1])$ with the Lebesgue measure defined by

$$
f_{n}(x)= \begin{cases}\sqrt{n} & \text { if } 0<x<\frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

It is straightforward to verify that $f_{n} \rightarrow 0$ in measure, but $\left\|f_{n}\right\|_{2}=1$ for all n so $f_{n} \nrightarrow 0$ in L^{2}.
5. Let $F \subset \mathbb{R}$ be a closed set, and define the distance from $x \in \mathbb{R}$ to F by

$$
d(x, F)=\inf _{y \in F}|x-y|
$$

Prove that

$$
\lim _{x \rightarrow y} \frac{d(x, F)}{|x-y|}=0
$$

for a.e. $y \in F$.
Hint: Consider Lebesgue points of F.
Proof. Recall that $y \in F$ is a Lebesgue point of F if

$$
\lim _{\substack{m(B) \rightarrow 0 \\ y \in B}} \frac{m(B \cap F)}{m(B)}=1 \quad \Leftrightarrow \quad \lim _{\substack{m(B) \rightarrow 0 \\ y \in B}} \frac{m(B)-m(B \cap F)}{m(B)}=0
$$

where the limit is taken over balls (i.e. intervals) B in \mathbb{R} that contain y. Since Lebesgue points have full measure in F it suffices to prove the given equality for Lebesgue points.
Suppose y is a Lebesgue point of F, and $x \in \mathbb{R}$ arbitrary. Let $B_{r}(x)$ denote the ball of radius r centered at x, and let $B_{r}:=B_{r}(x, y)$ denote the smallest open interval containing both $B_{r}(x)$ and $B_{r}(y)$. It is clear that $m\left(B_{r}\right)=|x-y|+2 r$. If we intersect this ball with F, then we must exclude an interval of length at least $d(x, F)$:

$$
m\left(B_{r} \cap F\right) \leq m\left(B_{r}\right)-d(x, F) \quad \Rightarrow \quad d(x, F) \leq m\left(B_{r}\right)-m\left(B_{r} \cap F\right)
$$

This implies

$$
\frac{d(x, F)}{|x-y|} \leq \liminf _{r \rightarrow 0} \frac{m\left(B_{r}\right)-m\left(B_{r} \cap F\right)}{|x-y|}=\liminf _{r \rightarrow 0} \frac{m\left(B_{r}\right)-m\left(B_{r} \cap F\right)}{m\left(B_{r}\right)}
$$

Since y is a Lebesgue point, for any $\epsilon>0$ there is an $\delta>$ such that

$$
m(B)<\delta, y \in B \quad \Rightarrow \quad\left|\frac{m(B)-m(B \cap F)}{m(B)}\right|<\epsilon
$$

so taking $B=B_{r}(x, y)$ for any x satisfying $0<|x-y|<\delta$, we have

$$
0 \leq \frac{d(x, F)}{|x-y|} \leq \liminf _{r \rightarrow 0} \frac{m\left(B_{r}\right)-m\left(B_{r} \cap F\right)}{m\left(B_{r}\right)}<\epsilon
$$

In the limit as x approaches y, we get $\lim _{x \rightarrow y} \frac{d(x, F)}{|x-y|}<\epsilon$. But since ϵ was arbitrary, this shows that the limit is in fact 0 .

